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    Welcome! This is the documentation for Pycopy, 
    v3.6.1, last updated 14 Dec 2021.
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    about the various platforms -
    also known as ports
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License information

The MIT License (MIT)

Copyright (c) 2013-2020 Damien P. George, Paul Sokolovsky, and others

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.




          

      

      

    

  

    
      
          
            
  
Pycopy language and implementation

Pycopy aims to implement the Python 3.4 standard (with selected
features from later versions) with respect to language syntax, and most
of the features of Pycopy are identical to those described by the
“Language Reference” documentation at
docs.python.org [https://docs.python.org/3/reference/index.html].

The Pycopy standard library is described in the
corresponding chapter. The Differences from CPython
chapter describes differences between Pycopy and CPython (which
mostly concern standard library and types, but also some language-level
features).

This chapter describes features and peculiarities of Pycopy
implementation and the best practices to use them.



	Glossary

	Interactive Interpreter Mode (aka REPL)

	MicroPython .mpy files

	Writing interrupt handlers

	Maximising Speed

	Usage on Microcontrollers

	Distribution packages, package management, and deploying applications

	Inline assembler for Thumb2 architectures

	Working with filesystems

	The pyboard.py tool








          

      

      

    

  

    
      
          
            
  
Glossary


	baremetal

	A system without a (full-fledged) OS, for example an
MCU-based system. When running on a baremetal system,
Pycopy effectively becomes its user-facing OS with a command
interpreter (REPL).



	board

	A PCB board. Oftentimes, the term is used to denote a particular
model of an MCU system. Sometimes, it is used to actually
refer to Pycopy port to a particular board (and then
may also refer to “boardless” ports like
Unix port).



	buffer

	An object implementing a buffer protocol. The simplest examples of
buffers are bytes (read-only buffer) and bytearray (read-write
buffer).



	callee-owned tuple

	A tuple returned by some builtin function/method, containing data
which is valid for a limited time, usually until next call to the
same function (or a group of related functions). After next call,
data in the tuple may be changed. This leads to the following
restriction on the usage of callee-owned tuples - references to
them cannot be stored. The only valid operation is extracting
values from them (including making a copy). Callee-owned tuples
is a Pycopy-specific construct (not available in the general
Python language), introduced for memory allocation optimization.
The idea is that callee-owned tuple is allocated once and stored
on the callee side. Subsequent calls don’t require allocation,
allowing to return multiple values when allocation is not possible
(e.g. in interrupt context) or not desirable (because allocation
inherently leads to memory fragmentation). Note that callee-owned
tuples are effectively mutable tuples, making an exception to
Python’s rule that tuples are immutable. (It may be interesting
why tuples were used for such a purpose then, instead of mutable
lists - the reason for that is that lists are mutable from user
application side too, so a user could do things to a callee-owned
list which the callee doesn’t expect and could lead to problems;
a tuple is protected from this.) There is another way to summarize
the situation: a callee-owned tuple is a special subtype of the
normal tuple type, with the semantics described above, namely:
a user application cannot change its contents, but some special
functions can. In the current implementation, this special subtype
actually coincides with the main tuple type for efficiency reasons
(and this is an implementation detail with which users should not
be concerned).



	CPython

	CPython is the reference implementation of Python programming
language, and the most well-known one, which most of the people
run. It is however one of many implementations (among which
Jython, IronPython, PyPy, and many more, including Pycopy).
As there is no formal specification of the Python language, only
CPython documentation, it is not always easy to draw a line
between Python the language and CPython its particular
implementation. This however leaves more freedom for other
implementations. For example, Pycopy does a lot of things
differently than CPython, while still aspiring to be a Python
language implementation.



	fragmentation

	Fragmentation is a phenomenon of any dynamic memory allocation
system when free memory is spread across a number of chunks,
so while total amount of free memory may be high, allocating
a contiguous chunk of memory is possible only within the size
of the largest free chunk. Note that fragmentation is not just
an issue of scripting languages or Pycopy in particular,
a C program performing dynamic allocation is subject to the
same issues. To understand a problem better, consider following
example: there’re 4K of memory total, and application consecutively
allocates 1K chunks, numbered #0, #1, #2, #3. Then if application
frees chunks #1 and #3, there’re total 2K of free memory. However,
it’s possible to allocate a chunk with the maximum size of 1K only.
Measures to fight fragmentation include: 1) preallocation (static
allocation) and inplace operations; 2) compacting garbage
collection. Static allocation is a well-known technique oftentimes
used in C. Unlike many other scripting languages, Python provides
excelent capabilities for inplace operations on preallocated
buffers and objects, and Pycopy extends it even further.
Compacting garbage collection is however an open topic.



	GPIO

	General-purpose input/output. The simplest means to control
electrical signals. With GPIO, user can configure hardware
signal pin to be either input or output, and set or get
its digital signal value (logical “0” or “1”). Pycopy
abstracts GPIO access using machine.Pin and machine.Signal
classes.



	GPIO port

	A group of GPIO pins, usually based on hardware
properties of these pins (e.g. controllable by the same
register).



	interned string

	A string referenced by its (unique) identity rather than its
address. Interned strings are thus can be quickly compared just
by their identifiers, instead of comparing by content. The
drawbacks of interned strings are that interning operation takes
time (proportional to the number of existing interned strings,
i.e. becoming slower and slower over time) and that the space
used for interned strings is not reclaimable. String interning
is done automatically by Pycopy compiler and runtime when
it’s either required by the implementation (e.g. function keyword
arguments are represented by interned string id’s) or deemed
beneficial (e.g. for short enough strings, which have a chance
to be repeated, and thus interning them would save memory on
copies). Most of string and I/O operations don’t produce interned
strings due to drawbacks described above.



	MCU

	Microcontroller. Microcontrollers usually have much less resources
than a full-fledged computing system, but smaller, cheaper and
require much less power. Pycopy is designed to be small and
optimized enough to run on an average modern microcontroller.



	memory allocation

	Computers store data in memory, and memory allocation is a process
they perform to store new data in memory. This process has its
cost (in terms of time required), as usually involves scanning
thru memory to find a suitable free chunk. It may also fail if
suitable free chunk is not found. Computers also have “registers”,
which allow to store limited amount of data without special memory
allocation. While Pycopy is a high-level language, these basic
traits of computers still apply to some aspects of its functioning,
and worth to keep in mind when e.g. optimizing an application, or
trying to achieve real-time/failure-free operation.

Pycopy stores majority of objects in memory, thus when creating
a new object it needs to perform memory allocation. However, there
are exceptions. Some special objects may be created without
allocation. One notable example is small integer’s. There may
be also other objects like, e.g. short repeated strings which are
automatically interned, etc. These are
however considered an implementation detail, and often differ
by a Pycopy port.

Besides using allocation-free objects (set of which is very limited,
as explained above), there’s another way to avoid, or at least limit
memory allocation: avoid creating new objects during operations (and
growing object size, as that leads to the need to allocate more memory
too). These are known as inplace operations.

An advanced Pycopy programmer should know about the memory
allocation aspects because:


	Pycopy features automatic memory management. Allocation
operations are usually performed fast, until available memory
is exhausted, then garbage collection (GC) needs to be performed.
The GC is a relatively long operation, which can lead to delays
in application response.


	Allocation leads to fragmentation.


	If GC didn’t reclaim free block of memory of suitable size (which
can be due to fragmentation), allocation will simply fail,
aborting an application unless special care is taken.


	Even without effects of GC, memory allocation takes non-zero
time, and this time may vary. This may both slow down tight
processing loops, and make them non real-time (processing time
may vary noticeably).


	Memory allocation may be disallowed in special execution contexts,
e.g. in interrupt handlers.






	micropython-lib

	See pycopy-lib.



	pycopy-lib

	Pycopy is (usually) distributed as a single executable/binary
file with just few builtin modules. There is no extensive standard
library comparable with CPython. Instead, there is a related, but
separate project
pycopy-lib [https://github.com/pfalcon/pycopy-lib]
which provides implementations for many modules from CPython’s
standard library. However, large subset of these modules require
POSIX-like environment (Linux, FreeBSD, MacOS, etc.; Windows may be
partially supported), and thus would work or make sense only with
Pycopy Unix port. Some subset of modules is however usable
for baremetal ports too.

Unlike monolithic CPython stdlib, pycopy-lib modules
are intended to be installed individually - either using manual
copying or using upip.



	MicroPython port

	See Pycopy port.



	Pycopy port

	Pycopy supports different boards, RTOSes,
and OSes, and can be relatively easily adapted to new systems.
Pycopy with support for a particular system is called a
“port” to that system. Different ports may have widely different
functionality. This documentation is intended to be a reference
of the generic APIs available across different ports (“Pycopy
core”). Note that some ports may still omit some APIs described
here (e.g. due to resource constraints). Any such differences,
and port-specific extensions beyond Pycopy core functionality,
would be described in the separate port-specific documentation.



	MicroPython Unix port

	See Pycopy Unix port.



	Pycopy Unix port

	Unix port is one of the major Pycopy ports.
It is intended to run on POSIX-compatible operating systems, like
Linux, MacOS, FreeBSD, Solaris, etc. It also serves as the basis
of Windows port. The importance of Unix port lies in the fact
that while there are many different boards, so
two random users unlikely have the same board, almost all modern
OSes have some level of POSIX compatibility, so Unix port serves
as a kind of “common ground” to which any user can have access.
So, Unix port is used for initial prototyping, different kinds
of testing, development of machine-independent features, etc.
All users of Pycopy, even those which are interested only
in running Pycopy on MCU systems, are recommended
to be familiar with Unix (or Windows) port, as it is important
productivity helper and a part of normal Pycopy workflow.



	port

	Either Pycopy port or GPIO port. If not clear
from context, it’s recommended to use full specification like one
of the above.



	small integer

	An integer value of limited range which can be produced and operated
on without memory allocation. See memory allocation for why this
is useful. A small integer fits within a machine word, and as it
needs to be distinguished from values of other types, which is done
by means of a special tag bit(s) in a machine word, it has necessarily
small range than the machine word. To reinstate that, a small int cannot
hold an entire value of a machine word, which is useful fact to keep in
mind for developers interested in optimization, e.g. for real-time
operations. Also keep in mind that Python integers are signed, so
small integer is signed too. As an example, with minimum 1 bit required
for a tag, and 1 bit for a sign, on a typical 32-bit system, a small
integer can hold a value in range -2**30 .. 2**30-1, or roughly
+/- one billion.



	stream

	Also known as a “file-like object”. An object which provides sequential
read-write access to the underlying data. A stream object implements
a corresponding interface, which consists of methods like read(),
write(), readinto(), seek(), flush(), close(), etc.
A stream is an important concept in Pycopy, many I/O objects
implement the stream interface, and thus can be used consistently and
interchangeably in different contexts. For more information on
streams, see uio module.



	upip

	(Literally, “micro pip”). A package manage for Pycopy, inspired
by CPython’s pip, but much smaller and with reduced functionality.
upip runs both on Unix port and on
baremetal ports (those which offer filesystem and networking
support).








          

      

      

    

  

    
      
          
            
  
Interactive Interpreter Mode (aka REPL)

This section covers some characteristics of the MicroPython Interactive
Interpreter Mode. A commonly used term for this is REPL (read-eval-print-loop)
which will be used to refer to this interactive prompt.


Auto-indent

When typing python statements which end in a colon (for example if, for, while)
then the prompt will change to three dots (…) and the cursor will be indented
by 4 spaces. When you press return, the next line will continue at the same
level of indentation for regular statements or an additional level of indentation
where appropriate. If you press the backspace key then it will undo one
level of indentation.

If your cursor is all the way back at the beginning, pressing RETURN will then
execute the code that you’ve entered. The following shows what you’d see
after entering a for statement (the underscore shows where the cursor winds up):

>>> for i in range(30):
...     _





If you then enter an if statement, an additional level of indentation will be
provided:

>>> for i in range(30):
...     if i > 3:
...         _





Now enter break followed by RETURN and press BACKSPACE:

>>> for i in range(30):
...     if i > 3:
...         break
...     _





Finally type print(i), press RETURN, press BACKSPACE and press RETURN again:

>>> for i in range(30):
...     if i > 3:
...         break
...     print(i)
...
0
1
2
3
>>>





Auto-indent won’t be applied if the previous two lines were all spaces.  This
means that you can finish entering a compound statement by pressing RETURN
twice, and then a third press will finish and execute.



Auto-completion

While typing a command at the REPL, if the line typed so far corresponds to
the beginning of the name of something, then pressing TAB will show
possible things that could be entered. For example, first import the machine
module by entering import machine and pressing RETURN.
Then type m and press TAB and it should expand to machine.
Enter a dot . and press TAB again. You should see something like:

>>> machine.
__name__        info            unique_id       reset
bootloader      freq            rng             idle
sleep           deepsleep       disable_irq     enable_irq
Pin





The word will be expanded as much as possible until multiple possibilities exist.
For example, type machine.Pin.AF3 and press TAB and it will expand to
machine.Pin.AF3_TIM. Pressing TAB a second time will show the possible
expansions:

>>> machine.Pin.AF3_TIM
AF3_TIM10       AF3_TIM11       AF3_TIM8        AF3_TIM9
>>> machine.Pin.AF3_TIM







Interrupting a running program

You can interrupt a running program by pressing Ctrl-C. This will raise a KeyboardInterrupt
which will bring you back to the REPL, providing your program doesn’t intercept the
KeyboardInterrupt exception.

For example:

>>> for i in range(1000000):
...     print(i)
...
0
1
2
3
...
6466
6467
6468
Traceback (most recent call last):
  File "<stdin>", line 2, in <module>
KeyboardInterrupt:
>>>







Paste mode

If you want to paste some code into your terminal window, the auto-indent feature
will mess things up. For example, if you had the following python code:

def foo():
    print('This is a test to show paste mode')
    print('Here is a second line')
foo()





and you try to paste this into the normal REPL, then you will see something like
this:

>>> def foo():
...         print('This is a test to show paste mode')
...             print('Here is a second line')
...             foo()
...
  File "<stdin>", line 3
IndentationError: unexpected indent





If you press Ctrl-E, then you will enter paste mode, which essentially turns off
the auto-indent feature, and changes the prompt from >>> to ===. For example:

>>>
paste mode; Ctrl-C to cancel, Ctrl-D to finish
=== def foo():
===     print('This is a test to show paste mode')
===     print('Here is a second line')
=== foo()
===
This is a test to show paste mode
Here is a second line
>>>





Paste Mode allows blank lines to be pasted. The pasted text is compiled as if
it were a file. Pressing Ctrl-D exits paste mode and initiates the compilation.



Soft reset

A soft reset will reset the python interpreter, but tries not to reset the
method by which you’re connected to the MicroPython board (USB-serial, or Wifi).

You can perform a soft reset from the REPL by pressing Ctrl-D, or from your python
code by executing:

machine.soft_reset()





For example, if you reset your MicroPython board, and you execute a dir()
command, you’d see something like this:

>>> dir()
['__name__', 'pyb']





Now create some variables and repeat the dir() command:

>>> i = 1
>>> j = 23
>>> x = 'abc'
>>> dir()
['j', 'x', '__name__', 'pyb', 'i']
>>>





Now if you enter Ctrl-D, and repeat the dir() command, you’ll see that your
variables no longer exist:

MPY: sync filesystems
MPY: soft reboot
MicroPython v1.5-51-g6f70283-dirty on 2015-10-30; PYBv1.0 with STM32F405RG
Type "help()" for more information.
>>> dir()
['__name__', 'pyb']
>>>







The special variable _ (underscore)

When you use the REPL, you may perform computations and see the results.
MicroPython stores the results of the previous statement in the variable _ (underscore).
So you can use the underscore to save the result in a variable. For example:

>>> 1 + 2 + 3 + 4 + 5
15
>>> x = _
>>> x
15
>>>







Raw mode and raw-paste mode

Raw mode (also called raw REPL) is not something that a person would normally use.
It is intended for programmatic use and essentially behaves like paste mode with
echo turned off, and with optional flow control.

Raw mode is entered using Ctrl-A. You then send your python code, followed by
a Ctrl-D. The Ctrl-D will be acknowledged by ‘OK’ and then the python code will
be compiled and executed. Any output (or errors) will be sent back. Entering
Ctrl-B will leave raw mode and return the the regular (aka friendly) REPL.

Raw-paste mode is an additional mode within the raw REPL that includes flow control,
and which compiles code as it receives it. This makes it more robust for high-speed
transfer of code into the device, and it also uses less RAM when receiving because
it does not need to store a verbatim copy of the code before compiling (unlike
standard raw mode).

Raw-paste mode uses the following protocol:


	Enter raw REPL as usual via ctrl-A.


	Write 3 bytes: b"\x05A\x01" (ie ctrl-E then “A” then ctrl-A).


	Read 2 bytes to determine if the device entered raw-paste mode:


	If the result is b"R\x00" then the device understands the command but
doesn’t support raw paste.


	If the result is b"R\x01" then the device does support raw paste and
has entered this mode.


	Otherwise the result should be b"ra" and the device doesn’t support raw
paste and the string b"w REPL; CTRL-B to exit\r\n>" should be read and
discarded.






	If the device is in raw-paste mode then continue, otherwise fallback to
standard raw mode.


	Read 2 bytes, this is the flow control window-size-increment (in bytes)
stored as a 16-bit unsigned little endian integer.  The initial value for the
remaining-window-size variable should be set to this number.


	Write out the code to the device:


	While there are bytes to send, write up to the remaining-window-size worth
of bytes, and decrease the remaining-window-size by the number of bytes
written.


	If the remaining-window-size is 0, or there is a byte waiting to read, read
1 byte.  If this byte is b"\x01" then increase the remaining-window-size
by the window-size-increment from step 5.  If this byte is b"\x04" then
the device wants to end the data reception, and b"\x04" should be
written to the device and no more code sent after that.  (Note: if there is
a byte waiting to be read from the device then it does not need to be read
and acted upon immediately, the device will continue to consume incoming
bytes as long as reamining-window-size is greater than 0.)






	When all code has been written to the device, write b"\x04" to indicate
end-of-data.


	Read from the device until b"\x04" is received.  At this point the device
has received and compiled all of the code that was sent and is executing it.


	The device outputs any characters produced by the executing code.  When (if)
the code finishes b"\x04" will be output, followed by any exception that
was uncaught, followed again by b"\x04".  It then goes back to the
standard raw REPL and outputs b">".




For example, starting at a new line at the normal (friendly) REPL, if you write:

b"\x01\x05A\x01print(123)\x04"





Then the device will respond with something like:

b"\r\nraw REPL; CTRL-B to exit\r\n>R\x01\x80\x00\x01\x04123\r\n\x04\x04>"





Broken down over time this looks like:

# Step 1: enter raw REPL
write: b"\x01"
read: b"\r\nraw REPL; CTRL-B to exit\r\n>"

# Step 2-5: enter raw-paste mode
write: b"\x05A\x01"
read: b"R\x01\x80\x00\x01"

# Step 6-8: write out code
write: b"print(123)\x04"
read: b"\x04"

# Step 9: code executes and result is read
read: b"123\r\n\x04\x04>"





In this case the flow control window-size-increment is 128 and there are two
windows worth of data immediately available at the start, one from the initial
window-size-increment value and one from the explicit b"\x01" value that
is sent.  So this means up to 256 bytes can be written to begin with before
waiting or checking for more incoming flow-control characters.

The tools/pyboard.py program uses the raw REPL, including raw-paste mode, to
execute Python code on a MicroPython-enabled board.





          

      

      

    

  

    
      
          
            
  
MicroPython .mpy files

MicroPython defines the concept of an .mpy file which is a binary container
file format that holds precompiled code, and which can be imported like a
normal .py module.  The file foo.mpy can be imported via import foo,
as long as foo.mpy can be found in the usual way by the import machinery.
Usually, each directory listed in sys.path is searched in order.  When
searching a particular directory foo.py is looked for first and if that
is not found then foo.mpy is looked for, then the search continues in the
next directory if neither is found.  As such, foo.py will take precedence
over foo.mpy.

These .mpy files can contain bytecode which is usually generated from Python
source files (.py files) via the mpy-cross program.  For some architectures
an .mpy file can also contain native machine code, which can be generated in
a variety of ways, most notably from C source code.


Versioning and compatibility of .mpy files

A given .mpy file may or may not be compatible with a given MicroPython system.
Compatibility is based on the following:


	Version of the .mpy file: the version of the file must match the version
supported by the system loading it.


	Bytecode features used in the .mpy file: there are two bytecode features
which must match between the file and the system: unicode support and
inline caching of map lookups in the bytecode.


	Small integer bits: the .mpy file will require a minimum number of bits in
a small integer and the system loading it must support at least this many
bits.


	Qstr compression window size: the .mpy file will require a minimum window
size for qstr decompression and the system loading it must have a window
greater or equal to this size.


	Native architecture: if the .mpy file contains native machine code then
it will specify the architecture of that machine code and the system
loading it must support execution of that architecture’s code.




If a MicroPython system supports importing .mpy files then the
sys.implementation.mpy field will exist and return an integer which
encodes the version (lower 8 bits), features and native architecture.

Trying to import an .mpy file that fails one of the first four tests will
raise ValueError('incompatible .mpy file').  Trying to import an .mpy
file that fails the native architecture test (if it contains native machine
code) will raise ValueError('incompatible .mpy arch').

If importing an .mpy file fails then try the following:


	Determine the .mpy version and flags supported by your MicroPython system
by executing:

import sys
sys_mpy = sys.implementation.mpy
arch = [None, 'x86', 'x64',
    'armv6', 'armv6m', 'armv7m', 'armv7em', 'armv7emsp', 'armv7emdp',
    'xtensa', 'xtensawin'][sys_mpy >> 10]
print('mpy version:', sys_mpy & 0xff)
print('mpy flags:', end='')
if arch:
    print(' -march=' + arch, end='')
if sys_mpy & 0x100:
    print(' -mcache-lookup-bc', end='')
if not sys_mpy & 0x200:
    print(' -mno-unicode', end='')
print()







	Check the validity of the .mpy file by inspecting the first two bytes of
the file.  The first byte should be an uppercase ‘M’ and the second byte
will be the version number, which should match the system version from above.
If it doesn’t match then rebuild the .mpy file.


	Check if the system .mpy version matches the version emitted by mpy-cross
that was used to build the .mpy file, found by mpy-cross --version.
If it doesn’t match then recompile mpy-cross from the Git repository
checked out at the tag (or hash) reported by mpy-cross --version.


	Make sure you are using the correct mpy-cross flags, found by the code
above, or by inspecting the MPY_CROSS_FLAGS Makefile variable for the
port that you are using.




The following table shows the correspondence between MicroPython release
and .mpy version.



	MicroPython release

	.mpy version





	v1.12 and up

	5



	v1.11

	4



	v1.9.3 - v1.10

	3



	v1.9 - v1.9.2

	2



	v1.5.1 - v1.8.7

	0






For completeness, the next table shows the Git commit of the main
MicroPython repository at which the .mpy version was changed.



	.mpy version change

	Git commit





	4 to 5

	5716c5cf65e9b2cb46c2906f40302401bdd27517



	3 to 4

	9a5f92ea72754c01cc03e5efcdfe94021120531e



	2 to 3

	ff93fd4f50321c6190e1659b19e64fef3045a484



	1 to 2

	dd11af209d226b7d18d5148b239662e30ed60bad



	0 to 1

	6a11048af1d01c78bdacddadd1b72dc7ba7c6478



	initial version 0

	d8c834c95d506db979ec871417de90b7951edc30








Binary encoding of .mpy files

MicroPython .mpy files are a binary container format with code objects
stored internally in a nested hierarchy.  To keep files small while still
providing a large range of possible values it uses the concept of a
variably-encoded-unsigned-integer (vuint) in many places.  Similar to utf-8
encoding, this encoding stores 7 bits per byte with the 8th bit (MSB) set
if one or more bytes follow.  The bits of the unsigned integer are stored
in the vuint in LSB form.

The top-level of an .mpy file consists of two parts:


	The header.


	The raw-code for the outer scope of the module.
This outer scope is executed when the .mpy file is imported.





The header

The .mpy header is:



	size

	field





	byte

	value 0x4d (ASCII ‘M’)



	byte

	.mpy version number



	byte

	feature flags



	byte

	number of bits in a small int



	vuint

	size of qstr window








Raw code elements

A raw-code element contains code, either bytecode or native machine code.  Its
contents are:



	size

	field





	vuint

	type and size



	…

	code (bytecode or machine code)



	vuint

	number of constant objects



	vuint

	number of sub-raw-code elements



	…

	constant objects



	…

	sub-raw-code elements






The first vuint in a raw-code element encodes the type of code stored in this
element (the two least-significant bits), and the decompressed length of the code
(the amount of RAM to allocate for it).

Following the vuint comes the code itself.  In the case of bytecode it also contains
compressed qstr values.

Following the code comes a vuint counting the number of constant objects, and
another vuint counting the number of sub-raw-code elements.

The constant objects are then stored next.

Finally any sub-raw-code elements are stored, recursively.






          

      

      

    

  

    
      
          
            
  
Writing interrupt handlers

On suitable hardware MicroPython offers the ability to write interrupt handlers in Python. Interrupt handlers
- also known as interrupt service routines (ISR’s) - are defined as callback functions. These are executed
in response to an event such as a timer trigger or a voltage change on a pin. Such events can occur at any point
in the execution of the program code. This carries significant consequences, some specific to the MicroPython
language. Others are common to all systems capable of responding to real time events. This document covers
the language specific issues first, followed by a brief introduction to real time programming for those new to it.

This introduction uses vague terms like “slow” or “as fast as possible”. This is deliberate, as speeds are
application dependent. Acceptable durations for an ISR are dependent on the rate at which interrupts occur,
the nature of the main program, and the presence of other concurrent events.


Tips and recommended practices

This summarises the points detailed below and lists the principal recommendations for interrupt handler code.


	Keep the code as short and simple as possible.


	Avoid memory allocation: no appending to lists or insertion into dictionaries, no floating point.


	Consider using micropython.schedule to work around the above constraint.


	Where an ISR returns multiple bytes use a pre-allocated bytearray. If multiple integers are to be
shared between an ISR and the main program consider an array (array.array).


	Where data is shared between the main program and an ISR, consider disabling interrupts prior to accessing
the data in the main program and re-enabling them immediately afterwards (see Critical Sections).


	Allocate an emergency exception buffer (see below).






MicroPython issues


The emergency exception buffer

If an error occurs in an ISR, MicroPython is unable to produce an error report unless a special buffer is created
for the purpose. Debugging is simplified if the following code is included in any program using interrupts.

import micropython
micropython.alloc_emergency_exception_buf(100)





The emergency exception buffer can only hold one exception stack trace. This means that if a second exception is
thrown during the handling of an exception while the heap is locked, that second exception’s stack trace will
replace the original one - even if the second exception is cleanly handled. This can lead to confusing exception
messages if the buffer is later printed.



Simplicity

For a variety of reasons it is important to keep ISR code as short and simple as possible. It should do only what
has to be done immediately after the event which caused it: operations which can be deferred should be delegated
to the main program loop. Typically an ISR will deal with the hardware device which caused the interrupt, making
it ready for the next interrupt to occur. It will communicate with the main loop by updating shared data to indicate
that the interrupt has occurred, and it will return. An ISR should return control to the main loop as quickly
as possible. This is not a specific MicroPython issue so is covered in more detail below.



Communication between an ISR and the main program

Normally an ISR needs to communicate with the main program. The simplest means of doing this is via one or more
shared data objects, either declared as global or shared via a class (see below). There are various restrictions
and hazards around doing this, which are covered in more detail below. Integers, bytes and bytearray objects
are commonly used for this purpose along with arrays (from the array module) which can store various data types.



The use of object methods as callbacks

MicroPython supports this powerful technique which enables an ISR to share instance variables with the underlying
code. It also enables a class implementing a device driver to support multiple device instances. The following
example causes two LED’s to flash at different rates.

import pyb, micropython
micropython.alloc_emergency_exception_buf(100)
class Foo(object):
    def __init__(self, timer, led):
        self.led = led
        timer.callback(self.cb)
    def cb(self, tim):
        self.led.toggle()

red = Foo(pyb.Timer(4, freq=1), pyb.LED(1))
green = Foo(pyb.Timer(2, freq=0.8), pyb.LED(2))





In this example the red instance associates timer 4 with LED 1: when a timer 4 interrupt occurs red.cb()
is called causing LED 1 to change state. The green instance operates similarly: a timer 2 interrupt
results in the execution of green.cb() and toggles LED 2. The use of instance methods confers two
benefits. Firstly a single class enables code to be shared between multiple hardware instances. Secondly, as
a bound method the callback function’s first argument is self. This enables the callback to access instance
data and to save state between successive calls. For example, if the class above had a variable self.count
set to zero in the constructor, cb() could increment the counter. The red and green instances would
then maintain independent counts of the number of times each LED had changed state.



Creation of Python objects

ISR’s cannot create instances of Python objects. This is because MicroPython needs to allocate memory for the
object from a store of free memory block called the heap. This is not permitted in an interrupt handler because
heap allocation is not re-entrant. In other words the interrupt might occur when the main program is part way
through performing an allocation - to maintain the integrity of the heap the interpreter disallows memory
allocations in ISR code.

A consequence of this is that ISR’s can’t use floating point arithmetic; this is because floats are Python objects. Similarly
an ISR can’t append an item to a list. In practice it can be hard to determine exactly which code constructs will
attempt to perform memory allocation and provoke an error message: another reason for keeping ISR code short and simple.

One way to avoid this issue is for the ISR to use pre-allocated buffers. For example a class constructor
creates a bytearray instance and a boolean flag. The ISR method assigns data to locations in the buffer and sets
the flag. The memory allocation occurs in the main program code when the object is instantiated rather than in the ISR.

The MicroPython library I/O methods usually provide an option to use a pre-allocated buffer. For
example pyb.i2c.recv() can accept a mutable buffer as its first argument: this enables its use in an ISR.

A means of creating an object without employing a class or globals is as follows:

def set_volume(t, buf=bytearray(3)):
    buf[0] = 0xa5
    buf[1] = t >> 4
    buf[2] = 0x5a
    return buf





The compiler instantiates the default buf argument when the function is
loaded for the first time (usually when the module it’s in is imported).

An instance of object creation occurs when a reference to a bound method is
created. This means that an ISR cannot pass a bound method to a function. One
solution is to create a reference to the bound method in the class constructor
and to pass that reference in the ISR. For example:

class Foo():
    def __init__(self):
        self.bar_ref = self.bar  # Allocation occurs here
        self.x = 0.1
        tim = pyb.Timer(4)
        tim.init(freq=2)
        tim.callback(self.cb)

    def bar(self, _):
        self.x *= 1.2
        print(self.x)

    def cb(self, t):
        # Passing self.bar would cause allocation.
        micropython.schedule(self.bar_ref, 0)





Other techniques are to define and instantiate the method in the constructor
or to pass Foo.bar() with the argument self.



Use of Python objects

A further restriction on objects arises because of the way Python works. When an import statement is executed the
Python code is compiled to bytecode, with one line of code typically mapping to multiple bytecodes. When the code
runs the interpreter reads each bytecode and executes it as a series of machine code instructions. Given that an
interrupt can occur at any time between machine code instructions, the original line of Python code may be only
partially executed. Consequently a Python object such as a set, list or dictionary modified in the main loop
may lack internal consistency at the moment the interrupt occurs.

A typical outcome is as follows. On rare occasions the ISR will run at the precise moment in time when the object
is partially updated. When the ISR tries to read the object, a crash results. Because such problems typically occur
on rare, random occasions they can be hard to diagnose. There are ways to circumvent this issue, described in
Critical Sections below.

It is important to be clear about what constitutes the modification of an object. An alteration to a built-in type
such as a dictionary is problematic. Altering the contents of an array or bytearray is not. This is because bytes
or words are written as a single machine code instruction which is not interruptible: in the parlance of real time
programming the write is atomic. A user defined object might instantiate an integer, array or bytearray. It is valid
for both the main loop and the ISR to alter the contents of these.

MicroPython supports integers of arbitrary precision. Values between 2**30 -1 and -2**30 will be stored in
a single machine word. Larger values are stored as Python objects. Consequently changes to long integers cannot
be considered atomic. The use of long integers in ISR’s is unsafe because memory allocation may be
attempted as the variable’s value changes.



Overcoming the float limitation

In general it is best to avoid using floats in ISR code: hardware devices normally handle integers and conversion
to floats is normally done in the main loop. However there are a few DSP algorithms which require floating point.
On platforms with hardware floating point (such as the Pyboard) the inline ARM Thumb assembler can be used to work
round this limitation. This is because the processor stores float values in a machine word; values can be shared
between the ISR and main program code via an array of floats.



Using micropython.schedule

This function enables an ISR to schedule a callback for execution “very soon”. The callback is queued for
execution which will take place at a time when the heap is not locked. Hence it can create Python objects
and use floats. The callback is also guaranteed to run at a time when the main program has completed any
update of Python objects, so the callback will not encounter partially updated objects.

Typical usage is to handle sensor hardware. The ISR acquires data from the hardware and enables it to
issue a further interrupt. It then schedules a callback to process the data.

Scheduled callbacks should comply with the principles of interrupt handler design outlined below. This is to
avoid problems resulting from I/O activity and the modification of shared data which can arise in any code
which pre-empts the main program loop.

Execution time needs to be considered in relation to the frequency with which interrupts can occur. If an
interrupt occurs while the previous callback is executing, a further instance of the callback will be queued
for execution; this will run after the current instance has completed. A sustained high interrupt repetition
rate therefore carries a risk of unconstrained queue growth and eventual failure with a RuntimeError.

If the callback to be passed to schedule() is a bound method, consider the
note in “Creation of Python objects”.




Exceptions

If an ISR raises an exception it will not propagate to the main loop. The interrupt will be disabled unless the
exception is handled by the ISR code.



General issues

This is merely a brief introduction to the subject of real time programming. Beginners should note
that design errors in real time programs can lead to faults which are particularly hard to diagnose. This is because
they can occur rarely and at intervals which are essentially random. It is crucial to get the initial design right and
to anticipate issues before they arise. Both interrupt handlers and the main program need to be designed
with an appreciation of the following issues.


Interrupt handler design

As mentioned above, ISR’s should be designed to be as simple as possible. They should always return in a short,
predictable period of time. This is important because when the ISR is running, the main loop is not: inevitably
the main loop experiences pauses in its execution at random points in the code. Such pauses can be a source of hard
to diagnose bugs particularly if their duration is long or variable. In order to understand the implications of
ISR run time, a basic grasp of interrupt priorities is required.

Interrupts are organised according to a priority scheme. ISR code may itself be interrupted by a higher priority
interrupt. This has implications if the two interrupts share data (see Critical Sections below). If such an interrupt
occurs it interposes a delay into the ISR code. If a lower priority interrupt occurs while the ISR is running, it
will be delayed until the ISR is complete: if the delay is too long, the lower priority interrupt may fail. A
further issue with slow ISR’s is the case where a second interrupt of the same type occurs during its execution.
The second interrupt will be handled on termination of the first. However if the rate of incoming interrupts
consistently exceeds the capacity of the ISR to service them the outcome will not be a happy one.

Consequently looping constructs should be avoided or minimised. I/O to devices other than to the interrupting device
should normally be avoided: I/O such as disk access, print statements and UART access is relatively slow, and
its duration may vary. A further issue here is that filesystem functions are not reentrant: using filesystem I/O
in an ISR and the main program would be hazardous. Crucially ISR code should not wait on an event. I/O is acceptable
if the code can be guaranteed to return in a predictable period, for example toggling a pin or LED. Accessing the
interrupting device via I2C or SPI may be necessary but the time taken for such accesses should be calculated or
measured and its impact on the application assessed.

There is usually a need to share data between the ISR and the main loop. This may be done either through global
variables or via class or instance variables. Variables are typically integer or boolean types, or integer or byte
arrays (a pre-allocated integer array offers faster access than a list). Where multiple values are modified by
the ISR it is necessary to consider the case where the interrupt occurs at a time when the main program has
accessed some, but not all, of the values. This can lead to inconsistencies.

Consider the following design. An ISR stores incoming data in a bytearray, then adds the number of bytes
received to an integer representing total bytes ready for processing. The main program reads the number of bytes,
processes the bytes, then clears down the number of bytes ready. This will work until an interrupt occurs just
after the main program has read the number of bytes. The ISR puts the added data into the buffer and updates
the number received, but the main program has already read the number, so processes the data originally received.
The newly arrived bytes are lost.

There are various ways of avoiding this hazard, the simplest being to use a circular buffer. If it is not possible
to use a structure with inherent thread safety other ways are described below.



Reentrancy

A potential hazard may occur if a function or method is shared between the main program and one or more ISR’s or
between multiple ISR’s. The issue here is that the function may itself be interrupted and a further instance of
that function run. If this is to occur, the function must be designed to be reentrant. How this is done is an
advanced topic beyond the scope of this tutorial.



Critical sections

An example of a critical section of code is one which accesses more than one variable which can be affected by an ISR. If
the interrupt happens to occur between accesses to the individual variables, their values will be inconsistent. This is
an instance of a hazard known as a race condition: the ISR and the main program loop race to alter the variables. To
avoid inconsistency a means must be employed to ensure that the ISR does not alter the values for the duration of
the critical section. One way to achieve this is to issue pyb.disable_irq() before the start of the section, and
pyb.enable_irq() at the end. Here is an example of this approach:

import pyb, micropython, array
micropython.alloc_emergency_exception_buf(100)

class BoundsException(Exception):
    pass

ARRAYSIZE = const(20)
index = 0
data = array.array('i', 0 for x in range(ARRAYSIZE))

def callback1(t):
    global data, index
    for x in range(5):
        data[index] = pyb.rng() # simulate input
        index += 1
        if index >= ARRAYSIZE:
            raise BoundsException('Array bounds exceeded')

tim4 = pyb.Timer(4, freq=100, callback=callback1)

for loop in range(1000):
    if index > 0:
        irq_state = pyb.disable_irq() # Start of critical section
        for x in range(index):
            print(data[x])
        index = 0
        pyb.enable_irq(irq_state) # End of critical section
        print('loop {}'.format(loop))
    pyb.delay(1)

tim4.callback(None)





A critical section can comprise a single line of code and a single variable. Consider the following code fragment.

count = 0
def cb(): # An interrupt callback
    count +=1
def main():
    # Code to set up the interrupt callback omitted
    while True:
        count += 1





This example illustrates a subtle source of bugs. The line count += 1 in the main loop carries a specific race
condition hazard known as a read-modify-write. This is a classic cause of bugs in real time systems. In the main loop
MicroPython reads the value of t.counter, adds 1 to it, and writes it back. On rare occasions the  interrupt occurs
after the read and before the write. The interrupt modifies t.counter but its change is overwritten by the main
loop when the ISR returns. In a real system this could lead to rare, unpredictable failures.

As mentioned above, care should be taken if an instance of a Python built in type is modified in the main code and
that instance is accessed in an ISR. The code performing the modification should be regarded as a critical
section to ensure that the instance is in a valid state when the ISR runs.

Particular care needs to be taken if a dataset is shared between different ISR’s. The hazard here is that the higher
priority interrupt may occur when the lower priority one has partially updated the shared data. Dealing with this
situation is an advanced topic beyond the scope of this introduction other than to note that mutex objects described
below can sometimes be used.

Disabling interrupts for the duration of a critical section is the usual and simplest way to proceed, but it disables
all interrupts rather than merely the one with the potential to cause problems. It is generally undesirable to disable
an interrupt for long. In the case of timer interrupts it introduces variability to the time when a callback occurs.
In the case of device interrupts, it can lead to the device being serviced too late with possible loss of data or
overrun errors in the device hardware. Like ISR’s, a critical section in the main code should have a short, predictable
duration.

An approach to dealing with critical sections which radically reduces the time for which interrupts are disabled is to
use an object termed a mutex (name derived from the notion of mutual exclusion). The main program locks the mutex
before running the critical section and unlocks it at the end. The ISR tests whether the mutex is locked. If it is,
it avoids the critical section and returns. The design challenge is defining what the ISR should do in the event
that access to the critical variables is denied. A simple example of a mutex may be found
here [https://github.com/peterhinch/micropython-samples.git]. Note that the mutex code does disable interrupts,
but only for the duration of eight machine instructions: the benefit of this approach is that other interrupts are
virtually unaffected.



Interrupts and the REPL

Interrupt handlers, such as those associated with timers, can continue to run
after a program terminates.  This may produce unexpected results where you might
have expected the object raising the callback to have gone out of scope.  For
example on the Pyboard:

def bar():
    foo = pyb.Timer(2, freq=4, callback=lambda t: print('.', end=''))

bar()





This continues to run until the timer is explicitly disabled or the board is
reset with ctrl D.
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This tutorial describes ways of improving the performance of MicroPython code.
Optimisations involving other languages are covered elsewhere, namely the use
of modules written in C and the MicroPython inline assembler.

The process of developing high performance code comprises the following stages
which should be performed in the order listed.


	Design for speed.


	Code and debug.




Optimisation steps:


	Identify the slowest section of code.


	Improve the efficiency of the Python code.


	Use the native code emitter.


	Use the viper code emitter.


	Use hardware-specific optimisations.





Designing for speed

Performance issues should be considered at the outset. This involves taking a view
on the sections of code which are most performance critical and devoting particular
attention to their design. The process of optimisation begins when the code has
been tested: if the design is correct at the outset optimisation will be
straightforward and may actually be unnecessary.


Algorithms

The most important aspect of designing any routine for performance is ensuring that
the best algorithm is employed. This is a topic for textbooks rather than for a
MicroPython guide but spectacular performance gains can sometimes be achieved
by adopting algorithms known for their efficiency.



RAM allocation

To design efficient MicroPython code it is necessary to have an understanding of the
way the interpreter allocates RAM. When an object is created or grows in size
(for example where an item is appended to a list) the necessary RAM is allocated
from a block known as the heap. This takes a significant amount of time;
further it will on occasion trigger a process known as garbage collection which
can take several milliseconds.

Consequently the performance of a function or method can be improved if an object is created
once only and not permitted to grow in size. This implies that the object persists
for the duration of its use: typically it will be instantiated in a class constructor
and used in various methods.

This is covered in further detail Controlling garbage collection below.



Buffers

An example of the above is the common case where a buffer is required, such as one
used for communication with a device. A typical driver will create the buffer in the
constructor and use it in its I/O methods which will be called repeatedly.

The MicroPython libraries typically provide support for pre-allocated buffers. For
example, objects which support stream interface (e.g., file or UART) provide read()
method which allocates new buffer for read data, but also a readinto() method
to read data into an existing buffer.



Floating point

Some MicroPython ports allocate floating point numbers on heap. Some other ports
may lack dedicated floating-point coprocessor, and perform arithmetic operations
on them in “software” at considerably lower speed than on integers. Where
performance is important, use integer operations and restrict the use of floating
point to sections of the code where performance is not paramount. For example,
capture ADC readings as integers values to an array in one quick go, and only then
convert them to floating-point numbers for signal processing.



Arrays

Consider the use of the various types of array classes as an alternative to lists.
The array module supports various element types with 8-bit elements supported
by Python’s built in bytes and bytearray classes. These data structures all store
elements in contiguous memory locations. Once again to avoid memory allocation in critical
code these should be pre-allocated and passed as arguments or as bound objects.

When passing slices of objects such as bytearray instances, Python creates
a copy which involves allocation of the size proportional to the size of slice.
This can be alleviated using a memoryview object. memoryview itself
is allocated on heap, but is a small, fixed-size object, regardless of the size
of slice it points too.

ba = bytearray(10000)  # big array
func(ba[30:2000])      # a copy is passed, ~2K new allocation
mv = memoryview(ba)    # small object is allocated
func(mv[30:2000])      # a pointer to memory is passed





A memoryview can only be applied to objects supporting the buffer protocol - this
includes arrays but not lists. Small caveat is that while memoryview object is live,
it also keeps alive the original buffer object. So, a memoryview isn’t a universal
panacea. For instance, in the example above, if you are done with 10K buffer and
just need those bytes 30:2000 from it, it may be better to make a slice, and let
the 10K buffer go (be ready for garbage collection), instead of making a
long-living memoryview and keeping 10K blocked for GC.

Nonetheless, memoryview is indispensable for advanced preallocated buffer
management. readinto() method discussed above puts data at the beginning
of buffer and fills in entire buffer. What if you need to put data in the
middle of existing buffer? Just create a memoryview into the needed section
of buffer and pass it to readinto().




Identifying the slowest section of code

This is a process known as profiling and is covered in textbooks and
(for standard Python) supported by various software tools. For the type of
smaller embedded application likely to be running on MicroPython platforms
the slowest function or method can usually be established by judicious use
of the timing ticks group of functions documented in utime.
Code execution time can be measured in ms, us, or CPU cycles.

The following enables any function or method to be timed by adding an
@timed_function decorator:

def timed_function(f, *args, **kwargs):
    myname = str(f).split(' ')[1]
    def new_func(*args, **kwargs):
        t = utime.ticks_us()
        result = f(*args, **kwargs)
        delta = utime.ticks_diff(utime.ticks_us(), t)
        print('Function {} Time = {:6.3f}ms'.format(myname, delta/1000))
        return result
    return new_func







MicroPython code improvements


The const() declaration

MicroPython provides a const() declaration. This works in a similar way
to #define in C in that when the code is compiled to bytecode the compiler
substitutes the numeric value for the identifier. This avoids a dictionary
lookup at runtime. The argument to const() may be anything which, at
compile time, evaluates to an integer e.g. 0x100 or 1 << 8.



Caching object references

Where a function or method repeatedly accesses objects performance is improved
by caching the object in a local variable:

class foo(object):
    def __init__(self):
        self.ba = bytearray(100)
    def bar(self, obj_display):
        ba_ref = self.ba
        fb = obj_display.framebuffer
        # iterative code using these two objects





This avoids the need repeatedly to look up self.ba and obj_display.framebuffer
in the body of the method bar().



Controlling garbage collection

When memory allocation is required, MicroPython attempts to locate an adequately
sized block on the heap. This may fail, usually because the heap is cluttered
with objects which are no longer referenced by code. If a failure occurs, the
process known as garbage collection reclaims the memory used by these redundant
objects and the allocation is then tried again - a process which can take several
milliseconds.

There may be benefits in pre-empting this by periodically issuing gc.collect().
Firstly doing a collection before it is actually required is quicker - typically on the
order of 1ms if done frequently. Secondly you can determine the point in code
where this time is used rather than have a longer delay occur at random points,
possibly in a speed critical section. Finally performing collections regularly
can reduce fragmentation in the heap. Severe fragmentation can lead to
non-recoverable allocation failures.




The Native code emitter

This causes the MicroPython compiler to emit native CPU opcodes rather than
bytecode. It covers the bulk of the MicroPython functionality, so most functions will require
no adaptation (but see below). It is invoked by means of a function decorator:

@micropython.native
def foo(self, arg):
    buf = self.linebuf # Cached object
    # code





There are certain limitations in the current implementation of the native code emitter.


	Context managers are not supported (the with statement).


	Generators are not supported.


	If raise is used an argument must be supplied.




The trade-off for the improved performance (roughly twice as fast as bytecode) is an
increase in compiled code size.



The Viper code emitter

The optimisations discussed above involve standards-compliant Python code. The
Viper code emitter is not fully compliant. It supports special Viper native data types
in pursuit of performance. Integer processing is non-compliant because it uses machine
words: arithmetic on 32 bit hardware is performed modulo 2**32.

Like the Native emitter Viper produces machine instructions but further optimisations
are performed, substantially increasing performance especially for integer arithmetic and
bit manipulations. It is invoked using a decorator:

@micropython.viper
def foo(self, arg: int) -> int:
    # code





As the above fragment illustrates it is beneficial to use Python type hints to assist the Viper optimiser.
Type hints provide information on the data types of arguments and of the return value; these
are a standard Python language feature formally defined here PEP0484 [https://www.python.org/dev/peps/pep-0484/].
Viper supports its own set of types namely int, uint (unsigned integer), ptr, ptr8,
ptr16 and ptr32. The ptrX types are discussed below. Currently the uint type serves
a single purpose: as a type hint for a function return value. If such a function returns 0xffffffff
Python will interpret the result as 2**32 -1 rather than as -1.

In addition to the restrictions imposed by the native emitter the following constraints apply:


	Functions may have up to four arguments.


	Default argument values are not permitted.


	Floating point may be used but is not optimised.




Viper provides pointer types to assist the optimiser. These comprise


	ptr Pointer to an object.


	ptr8 Points to a byte.


	ptr16 Points to a 16 bit half-word.


	ptr32 Points to a 32 bit machine word.




The concept of a pointer may be unfamiliar to Python programmers. It has similarities
to a Python memoryview object in that it provides direct access to data stored in memory.
Items are accessed using subscript notation, but slices are not supported: a pointer can return
a single item only. Its purpose is to provide fast random access to data stored in contiguous
memory locations - such as data stored in objects which support the buffer protocol, and
memory-mapped peripheral registers in a microcontroller. It should be noted that programming
using pointers is hazardous: bounds checking is not performed and the compiler does nothing to
prevent buffer overrun errors.

Typical usage is to cache variables:

@micropython.viper
def foo(self, arg: int) -> int:
    buf = ptr8(self.linebuf) # self.linebuf is a bytearray or bytes object
    for x in range(20, 30):
        bar = buf[x] # Access a data item through the pointer
        # code omitted





In this instance the compiler “knows” that buf is the address of an array of bytes;
it can emit code to rapidly compute the address of buf[x] at runtime. Where casts are
used to convert objects to Viper native types these should be performed at the start of
the function rather than in critical timing loops as the cast operation can take several
microseconds. The rules for casting are as follows:


	Casting operators are currently: int, bool, uint, ptr, ptr8, ptr16 and ptr32.


	The result of a cast will be a native Viper variable.


	Arguments to a cast can be a Python object or a native Viper variable.


	If argument is a native Viper variable, then cast is a no-op (i.e. costs nothing at runtime)
that just changes the type (e.g. from uint to ptr8) so that you can then store/load
using this pointer.


	If the argument is a Python object and the cast is int or uint, then the Python object
must be of integral type and the value of that integral object is returned.


	The argument to a bool cast must be integral type (boolean or integer); when used as a return
type the viper function will return True or False objects.


	If the argument is a Python object and the cast is ptr, ptr, ptr16 or ptr32,
then the Python object must either have the buffer protocol (in which case a pointer to the
start of the buffer is returned) or it must be of integral type (in which case the value of
that integral object is returned).




Writing to a pointer which points to a read-only object will lead to undefined behaviour.

The following example illustrates the use of a ptr16 cast to toggle pin X1 n times:

BIT0 = const(1)
@micropython.viper
def toggle_n(n: int):
    odr = ptr16(stm.GPIOA + stm.GPIO_ODR)
    for _ in range(n):
        odr[0] ^= BIT0





A detailed technical description of the three code emitters may be found
on Kickstarter here Note 1 [https://www.kickstarter.com/projects/214379695/micro-python-python-for-microcontrollers/posts/664832]
and here Note 2 [https://www.kickstarter.com/projects/214379695/micro-python-python-for-microcontrollers/posts/665145]



Accessing hardware directly


Note

Code examples in this section are given for the Pyboard. The techniques
described however may be applied to other MicroPython ports too.
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Usage on Microcontrollers

MicroPython is designed to be capable of running on microcontrollers. These
have hardware limitations which may be unfamiliar to programmers more familiar
with conventional computers. In particular the amount of RAM and nonvolatile
“disk” (flash memory) storage is limited. This tutorial offers ways to make
the most of the limited resources. Because MicroPython runs on controllers
based on a variety of architectures, the methods presented are generic: in some
cases it will be necessary to obtain detailed information from platform specific
documentation.


Flash memory

On the Pyboard the simple way to address the limited capacity is to fit a micro
SD card. In some cases this is impractical, either because the device does not
have an SD card slot or for reasons of cost or power consumption; hence the
on-chip flash must be used. The firmware including the MicroPython subsystem is
stored in the onboard flash. The remaining capacity is available for use. For
reasons connected with the physical architecture of the flash memory part of
this capacity may be inaccessible as a filesystem. In such cases this space may
be employed by incorporating user modules into a firmware build which is then
flashed to the device.

There are two ways to achieve this: frozen modules and frozen bytecode. Frozen
modules store the Python source with the firmware. Frozen bytecode uses the
cross compiler to convert the source to bytecode which is then stored with the
firmware. In either case the module may be accessed with an import statement:

import mymodule





The procedure for producing frozen modules and bytecode is platform dependent;
instructions for building the firmware can be found in the README files in the
relevant part of the source tree.

In general terms the steps are as follows:


	Clone the MicroPython repository [https://github.com/micropython/micropython].


	Acquire the (platform specific) toolchain to build the firmware.


	Build the cross compiler.


	Place the modules to be frozen in a specified directory (dependent on whether
the module is to be frozen as source or as bytecode).


	Build the firmware. A specific command may be required to build frozen
code of either type - see the platform documentation.


	Flash the firmware to the device.






RAM

When reducing RAM usage there are two phases to consider: compilation and
execution. In addition to memory consumption, there is also an issue known as
heap fragmentation. In general terms it is best to minimise the repeated
creation and destruction of objects. The reason for this is covered in the
section covering the heap.


Compilation phase

When a module is imported, MicroPython compiles the code to bytecode which is
then executed by the MicroPython virtual machine (VM). The bytecode is stored
in RAM. The compiler itself requires RAM, but this becomes available for use
when the compilation has completed.

If a number of modules have already been imported the situation can arise where
there is insufficient RAM to run the compiler. In this case the import
statement will produce a memory exception.

If a module instantiates global objects on import it will consume RAM at the
time of import, which is then unavailable for the compiler to use on subsequent
imports. In general it is best to avoid code which runs on import; a better
approach is to have initialisation code which is run by the application after
all modules have been imported. This maximises the RAM available to the
compiler.

If RAM is still insufficient to compile all modules one solution is to
precompile modules. MicroPython has a cross compiler capable of compiling Python
modules to bytecode (see the README in the mpy-cross directory). The resulting
bytecode file has a .mpy extension; it may be copied to the filesystem and
imported in the usual way. Alternatively some or all modules may be implemented
as frozen bytecode: on most platforms this saves even more RAM as the bytecode
is run directly from flash rather than being stored in RAM.



Execution phase

There are a number of coding techniques for reducing RAM usage.

Constants

MicroPython provides a const keyword which may be used as follows:

from micropython import const
ROWS = const(33)
_COLS = const(0x10)
a = ROWS
b = _COLS





In both instances where the constant is assigned to a variable the compiler
will avoid coding a lookup to the name of the constant by substituting its
literal value. This saves bytecode and hence RAM. However the ROWS value
will occupy at least two machine words, one each for the key and value in the
globals dictionary. The presence in the dictionary is necessary because another
module might import or use it. This RAM can be saved by prepending the name
with an underscore as in _COLS: this symbol is not visible outside the
module so will not occupy RAM.

The argument to const() may be anything which, at compile time, evaluates
to an integer e.g. 0x100 or 1 << 8. It can even include other const
symbols that have already been defined, e.g. 1 << BIT.

Constant data structures

Where there is a substantial volume of constant data and the platform supports
execution from Flash, RAM may be saved as follows. The data should be located in
Python modules and frozen as bytecode. The data must be defined as bytes
objects. The compiler ‘knows’ that bytes objects are immutable and ensures
that the objects remain in flash memory rather than being copied to RAM. The
ustruct module can assist in converting between bytes types and other
Python built-in types.

When considering the implications of frozen bytecode, note that in Python
strings, floats, bytes, integers and complex numbers are immutable. Accordingly
these will be frozen into flash. Thus, in the line

mystring = "The quick brown fox"





the actual string “The quick brown fox” will reside in flash. At runtime a
reference to the string is assigned to the variable mystring. The reference
occupies a single machine word. In principle a long integer could be used to
store constant data:

bar = 0xDEADBEEF0000DEADBEEF





As in the string example, at runtime a reference to the arbitrarily large
integer is assigned to the variable bar. That reference occupies a
single machine word.

It might be expected that tuples of integers could be employed for the purpose
of storing constant data with minimal RAM use. With the current compiler this
is ineffective (the code works, but RAM is not saved).

foo = (1, 2, 3, 4, 5, 6, 100000)





At runtime the tuple will be located in RAM. This may be subject to future
improvement.

Needless object creation

There are a number of situations where objects may unwittingly be created and
destroyed. This can reduce the usability of RAM through fragmentation. The
following sections discuss instances of this.

String concatenation

Consider the following code fragments which aim to produce constant strings:

var = "foo" + "bar"
var1 = "foo" "bar"
var2 = """\
foo\
bar"""





Each produces the same outcome, however the first needlessly creates two string
objects at runtime, allocates more RAM for concatenation before producing the
third. The others perform the concatenation at compile time which is more
efficient, reducing fragmentation.

Where strings must be dynamically created before being fed to a stream such as
a file it will save RAM if this is done in a piecemeal fashion. Rather than
creating a large string object, create a substring and feed it to the stream
before dealing with the next.

The best way to create dynamic strings is by means of the string format()
method:

var = "Temperature {:5.2f} Pressure {:06d}\n".format(temp, press)





Buffers

When accessing devices such as instances of UART, I2C and SPI interfaces, using
pre-allocated buffers avoids the creation of needless objects. Consider these
two loops:

while True:
    var = spi.read(100)
    # process data

buf = bytearray(100)
while True:
    spi.readinto(buf)
    # process data in buf





The first creates a buffer on each pass whereas the second re-uses a pre-allocated
buffer; this is both faster and more efficient in terms of memory fragmentation.

Bytes are smaller than ints

On most platforms an integer consumes four bytes. Consider the two calls to the
function foo():

def foo(bar):
    for x in bar:
        print(x)
foo((1, 2, 0xff))
foo(b'\1\2\xff')





In the first call a tuple of integers is created in RAM. The second efficiently
creates a bytes object consuming the minimum amount of RAM. If the module
were frozen as bytecode, the bytes object would reside in flash.

Strings Versus Bytes

Python3 introduced Unicode support. This introduced a distinction between a
string and an array of bytes. MicroPython ensures that Unicode strings take no
additional space so long as all characters in the string are ASCII (i.e. have
a value < 126). If values in the full 8-bit range are required bytes and
bytearray objects can be used to ensure that no additional space will be
required. Note that most string methods (e.g. str.strip() [https://docs.python.org/3.5/library/stdtypes.html#str.strip]) apply also to bytes
instances so the process of eliminating Unicode can be painless.

s = 'the quick brown fox'   # A string instance
b = b'the quick brown fox'  # A bytes instance





Where it is necessary to convert between strings and bytes the str.encode() [https://docs.python.org/3.5/library/stdtypes.html#str.encode]
and the bytes.decode() [https://docs.python.org/3.5/library/stdtypes.html#bytes.decode] methods can be used. Note that both strings and bytes
are immutable. Any operation which takes as input such an object and produces
another implies at least one RAM allocation to produce the result. In the
second line below a new bytes object is allocated. This would also occur if foo
were a string.

foo = b'   empty whitespace'
foo = foo.lstrip()





Runtime compiler execution

The Python funcitons eval and exec invoke the compiler at runtime, which
requires significant amounts of RAM. Note that the pickle library from
micropython-lib employs exec. It may be more RAM efficient to use the
ujson library for object serialisation.

Storing strings in flash

Python strings are immutable hence have the potential to be stored in read only
memory. The compiler can place in flash strings defined in Python code. As with
frozen modules it is necessary to have a copy of the source tree on the PC and
the toolchain to build the firmware. The procedure will work even if the
modules have not been fully debugged, so long as they can be imported and run.

After importing the modules, execute:

micropython.qstr_info(1)





Then copy and paste all the Q(xxx) lines into a text editor. Check for and
remove lines which are obviously invalid. Open the file qstrdefsport.h which
will be found in ports/stm32 (or the equivalent directory for the architecture in
use). Copy and paste the corrected lines at the end of the file. Save the file,
rebuild and flash the firmware. The outcome can be checked by importing the
modules and again issuing:

micropython.qstr_info(1)





The Q(xxx) lines should be gone.




The heap

When a running program instantiates an object the necessary RAM is allocated
from a fixed size pool known as the heap. When the object goes out of scope (in
other words becomes inaccessible to code) the redundant object is known as
“garbage”. A process known as “garbage collection” (GC) reclaims that memory,
returning it to the free heap. This process runs automatically, however it can
be invoked directly by issuing gc.collect().

The discourse on this is somewhat involved. For a ‘quick fix’ issue the
following periodically:

gc.collect()
gc.threshold(gc.mem_free() // 4 + gc.mem_alloc())






Fragmentation

Say a program creates an object foo, then an object bar. Subsequently
foo goes out of scope but bar remains. The RAM used by foo will be
reclaimed by GC. However if bar was allocated to a higher address, the
RAM reclaimed from foo will only be of use for objects no bigger than
foo. In a complex or long running program the heap can become fragmented:
despite there being a substantial amount of RAM available, there is insufficient
contiguous space to allocate a particular object, and the program fails with a
memory error.

The techniques outlined above aim to minimise this. Where large permanent buffers
or other objects are required it is best to instantiate these early in the
process of program execution before fragmentation can occur. Further improvements
may be made by monitoring the state of the heap and by controlling GC; these are
outlined below.



Reporting

A number of library functions are available to report on memory allocation and
to control GC. These are to be found in the gc and micropython modules.
The following example may be pasted at the REPL (ctrl e to enter paste mode,
ctrl d to run it).

import gc
import micropython
gc.collect()
micropython.mem_info()
print('-----------------------------')
print('Initial free: {} allocated: {}'.format(gc.mem_free(), gc.mem_alloc()))
def func():
    a = bytearray(10000)
gc.collect()
print('Func definition: {} allocated: {}'.format(gc.mem_free(), gc.mem_alloc()))
func()
print('Func run free: {} allocated: {}'.format(gc.mem_free(), gc.mem_alloc()))
gc.collect()
print('Garbage collect free: {} allocated: {}'.format(gc.mem_free(), gc.mem_alloc()))
print('-----------------------------')
micropython.mem_info(1)





Methods employed above:


	gc.collect() Force a garbage collection. See footnote.


	micropython.mem_info() Print a summary of RAM utilisation.


	gc.mem_free() Return the free heap size in bytes.


	gc.mem_alloc() Return the number of bytes currently allocated.


	micropython.mem_info(1) Print a table of heap utilisation (detailed below).




The numbers produced are dependent on the platform, but it can be seen that
declaring the function uses a small amount of RAM in the form of bytecode
emitted by the compiler (the RAM used by the compiler has been reclaimed).
Running the function uses over 10KiB, but on return a is garbage because it
is out of scope and cannot be referenced. The final gc.collect() recovers
that memory.

The final output produced by micropython.mem_info(1) will vary in detail but
may be interpreted as follows:



	Symbol

	Meaning





	.

	free block



	h

	head block



	=

	tail block



	m

	marked head block



	T

	tuple



	L

	list



	D

	dict



	F

	float



	B

	byte code



	M

	module






Each letter represents a single block of memory, a block being 16 bytes. So each
line of the heap dump represents 0x400 bytes or 1KiB of RAM.



Control of garbage collection

A GC can be demanded at any time by issuing gc.collect(). It is advantageous
to do this at intervals, firstly to pre-empt fragmentation and secondly for
performance. A GC can take several milliseconds but is quicker when there is
little work to do (about 1ms on the Pyboard). An explicit call can minimise that
delay while ensuring it occurs at points in the program when it is acceptable.

Automatic GC is provoked under the following circumstances. When an attempt at
allocation fails, a GC is performed and the allocation re-tried. Only if this
fails is an exception raised. Secondly an automatic GC will be triggered if the
amount of free RAM falls below a threshold. This threshold can be adapted as
execution progresses:

gc.collect()
gc.threshold(gc.mem_free() // 4 + gc.mem_alloc())





This will provoke a GC when more than 25% of the currently free heap becomes
occupied.

In general modules should instantiate data objects at runtime using constructors
or other initialisation functions. The reason is that if this occurs on
initialisation the compiler may be starved of RAM when subsequent modules are
imported. If modules do instantiate data on import then gc.collect() issued
after the import will ameliorate the problem.




String operations

MicroPython handles strings in an efficient manner and understanding this can
help in designing applications to run on microcontrollers. When a module
is compiled, strings which occur multiple times are stored once only, a process
known as string interning. In MicroPython an interned string is known as a qstr.
In a module imported normally that single instance will be located in RAM, but
as described above, in modules frozen as bytecode it will be located in flash.

String comparisons are also performed efficiently using hashing rather than
character by character. The penalty for using strings rather than integers may
hence be small both in terms of performance and RAM usage - a fact which may
come as a surprise to C programmers.



Postscript

MicroPython passes, returns and (by default) copies objects by reference. A
reference occupies a single machine word so these processes are efficient in
RAM usage and speed.

Where variables are required whose size is neither a byte nor a machine word
there are standard libraries which can assist in storing these efficiently and
in performing conversions. See the array, ustruct and uctypes
modules.


Footnote: gc.collect() return value

On Unix and Windows platforms the gc.collect() method returns an integer
which signifies the number of distinct memory regions that were reclaimed in the
collection (more precisely, the number of heads that were turned into frees). For
efficiency reasons bare metal ports do not return this value.
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Distribution packages, package management, and deploying applications

Just as the “big” Python, Pycopy supports creation of “third party”
packages, distributing them, and easily installing them in each user’s
environment. This chapter discusses how these actions are achieved.
Some familiarity with Python packaging is recommended.


Overview

Steps below represent a high-level workflow when creating and consuming
packages:


	Python modules and packages are turned into distribution package
archives, and published at the Python Package Index (PyPI).


	upip package manager can be used to install a distribution package
on a Pycopy port with networking capabilities (for example,
on the Unix port).


	For ports without networking capabilities, an “installation image”
can be prepared on the Unix port, and transferred to a device by
suitable means.


	For low-memory ports, the installation image can be frozen as the
bytecode into Pycopy executable, thus minimizing the memory
storage overheads.




The sections below describe this process in details.



Distribution packages

Python modules and packages can be packaged into archives suitable for
transfer between systems, storing at the well-known location (PyPI),
and downloading on demand for deployment. These archives are known as
distribution packages (to differentiate them from Python packages
(means to organize Python source code)).

The Pycopy distribution package format is a well-known tar.gz
format, with some adaptations however. The Gzip compressor, used as
an external wrapper for TAR archives, by default uses 32KB dictionary
size, which means that to uncompress a compressed stream, 32KB of
contiguous memory needs to be allocated. This requirement may be not
satisfiable on low-memory devices, which may have total memory available
less than that amount, and even if not, a contiguous block like that
may be hard to allocate due to memory fragmentation. To accommodate
these constraints, Pycopy distribution packages use Gzip compression
with the dictionary size of 4K, which should be a suitable compromise
with still achieving some compression while being able to uncompressed
even by the smallest devices.

Besides the small compression dictionary size, Pycopy distribution
packages also have other optimizations, like removing any files from
the archive which aren’t used by the installation process. In particular,
upip package manager doesn’t execute setup.py during installation
(see below), and thus that file is not included in the archive.

At the same time, these optimizations make Pycopy distribution
packages not compatible with CPython’s package manager, pip.
This isn’t considered a big problem, because:


	Packages can be installed with upip, and then can be used with
CPython (if they are compatible with it).


	In the other direction, majority of CPython packages would be
incompatible with Pycopy by various reasons, first of all,
the reliance on features not implemented by Pycopy.




Summing up, the Pycopy distribution package archives are highly
optimized for Pycopy’s target environments, which are highly
resource constrained devices.



upip package manager

Pycopy distribution packages are intended to be installed using
the upip package manager. upip is a Python application which is
usually distributed (as frozen bytecode) with network-enabled
Pycopy ports. At the very least,
upip is available in the Pycopy Unix port.

On any Pycopy port providing upip, it can be accessed as
following:

import upip
upip.help()
upip.install(package_or_package_list, [path])





Where package_or_package_list is the name of a distribution
package to install, or a list of such names to install multiple
packages. Optional path parameter specifies filesystem
location to install under and defaults to the standard library
location (see below).

An example of installing a specific package and then using it:

>>> import upip
>>> upip.install("pycopy-pystone_lowmem")
[...]
>>> import pystone_lowmem
>>> pystone_lowmem.main()





Note that the name of Python package and the name of distribution
package for it in general don’t have to match, and oftentimes they
don’t. This is because PyPI provides a central package repository
for all different Python implementations and versions, and thus
distribution package names may need to be namespaced for a particular
implementation. For example, all packages from pycopy-lib
follow this naming convention: for a Python module or package named
foo, the distribution package name is pycopy-foo.

For the ports which run Pycopy executable from the OS command
prompts (like the Unix port), upip can be (and indeed, usually is)
run from the command line instead of Pycopy’s own REPL. The
commands which corresponds to the example above are:

pycopy -m upip -h
pycopy -m upip install [-p <path>] <packages>...
pycopy -m upip install pycopy-pystone_lowmem





[TODO: Describe installation path.]



Cross-installing packages

For Pycopy ports without native networking
capabilities, the recommend process is “cross-installing” them into a
“directory image” using the Pycopy Unix port, and then
transferring this image to a device by suitable means.

Installing to a directory image involves using -p switch to upip:

pycopy -m upip install -p install_dir pycopy-pystone_lowmem





After this command, the package content (and contents of every dependency
packages) will be available in the install_dir/ subdirectory. You
would need to transfer contents of this directory (without the
install_dir/ prefix) to the device, at the suitable location, where
it can be found by the Python import statement (see discussion of
the upip installation path above).



Cross-installing packages with freezing

For the low-memory Pycopy ports, the process
described in the previous section does not provide the most efficient
resource usage,because the packages are installed in the source form,
so need to be compiled to the bytecome on each import. This compilation
requires RAM, and the resulting bytecode is also stored in RAM, reducing
its amount available for storing application data. Moreover, the process
above requires presence of the filesystem on a device, and the most
resource-constrained devices may not even have it.

The bytecode freezing is a process which resolves all the issues
mentioned above:


	The source code is pre-compiled into bytecode and store as such.


	The bytecode is stored in ROM, not RAM.


	Filesystem is not required for frozen packages.




Using frozen bytecode requires building the executable (firmware)
for a given Pycopy port from the C source code. Consequently,
the process is:


	Follow the instructions for a particular port on setting up a
toolchain and building the port. For example, for ESP8266 port,
study instructions in ports/esp8266/README.md and follow them.
Make sure you can build the port and deploy the resulting
executable/firmware successfully before proceeding to the next steps.


	Build Pycopy Unix port and make sure it is in your PATH and
you can execute pycopy.


	Change to port’s directory (e.g. ports/esp8266/ for ESP8266).


	Run make clean-frozen. This step cleans up any previous
modules which were installed for freezing (consequently, you need
to skip this step to add additional modules, instead of starting
from scratch).


	Run pycopy -m upip install -p modules <packages>... to
install packages you want to freeze.


	Run make clean.


	Run make.




After this, you should have the executable/firmware with modules as
the bytecode inside, which you can deploy the usual way.

Few notes:


	Step 5 in the sequence above assumes that the distribution package
is available from PyPI. If that is not the case, you would need
to copy Python source files manually to modules/ subdirectory
of the port directory. (Note that upip does not support
installing from e.g. version control repositories).


	The firmware for baremetal devices usually has size restrictions,
so adding too many frozen modules may overflow it. Usually, you
would get a linking error if this happens. However, in some cases,
an image may be produced, which is not runnable on a device. Such
cases are in general bugs, and should be reported and further
investigated. If you face such a situation, as an initial step,
you may want to decrease the amount of frozen modules included.






Creating distribution packages

Distribution packages for Pycopy are created in the same manner
as for CPython or any other Python implementation, see references at
the end of chapter. Setuptools (instead of distutils) should be used,
because distutils do not support dependencies and other features. “Source
distribution” (sdist) format is used for packaging. The post-processing
discussed above, (and pre-processing discussed in the following section)
is achieved by using custom sdist command for setuptools. Thus, packaging
steps remain the same as for the standard setuptools, the user just
needs to override sdist command implementation by passing the
appropriate argument to setup() call:

from setuptools import setup
import sdist_upip

setup(
    ...,
    cmdclass={'sdist': sdist_upip.sdist}
)





The sdist_upip.py module as referenced above can be found in
pycopy-lib:
https://github.com/pfalcon/pycopy-lib/blob/master/sdist_upip.py



Application resources

A complete application, besides the source code, oftentimes also consists
of data files, e.g. web page templates, game images, etc. It’s clear how
to deal with those when application is installed manually - you just put
those data files in the filesystem at some location and use the normal
file access functions.

The situation is different when deploying applications from packages - this
is more advanced, streamlined and flexible way, but also requires more
advanced approach to accessing data files. This approach is treating
the data files as “resources”, and abstracting away access to them.

Python supports resource access using its “setuptools” library, using
pkg_resources module. Pycopy, following its usual approach,
implements subset of the functionality of that module, specifically
pkg_resources.resource_stream(package, resource) function.
The idea is that an application calls this function, passing a
resource identifier, which is a relative path to data file within
the specified package (usually top-level application package). It
returns a stream object which can be used to access resource contents.
Thus, the resource_stream() emulates interface of the standard
open() function.

Implementation-wise, resource_stream() uses file operations
underlyingly, if distribution package is installed in the filesystem.
However, it also supports functioning without the underlying filesystem,
e.g. if the package is frozen as the bytecode. This however requires
an extra intermediate step when packaging application - creation of
“Python resource module”.

The idea of this module is to convert binary data to a Python bytes
objects, and put them into the dictionary, indexed by the resource name.
This conversion is done automatically using the overridden sdist command
described in the previous section.

Let’s trace the complete process using the following example. Suppose
your application has the following structure:

my_app/
    __main__.py
    utils.py
    data/
        page.html
        image.png





__main__.py and utils.py should access resources using the
following calls:

import pkg_resources

pkg_resources.resource_stream(__name__, "data/page.html")
pkg_resources.resource_stream(__name__, "data/image.png")





You can develop and debug using the Pycopy Unix port as usual.
When time comes to make a distribution package out of it, just use
overridden “sdist” command from sdist_upip.py module as described in
the previous section.

This will create a Python resource module named R.py, based on the
files declared in MANIFEST or MANIFEST.in files (any non-.py
file will be considered a resource and added to R.py) - before
proceeding with the normal packaging steps.

Prepared like this, your application will work both when deployed to
filesystem and as frozen bytecode.

If you would like to debug R.py creation, you can run:

python3 setup.py sdist --manifest-only





Alternatively, you can use tools/mpy_bin2res.py script from the
Pycopy distribution, in which case you will need to pass paths
to all resource files:

mpy_bin2res.py data/page.html data/image.png







References


	Python Packaging User Guide: https://packaging.python.org/


	Setuptools documentation: https://setuptools.readthedocs.io/


	Distutils documentation: https://docs.python.org/3/library/distutils.html








          

      

      

    

  

  
    

    Inline assembler for Thumb2 architectures
    

    

    
 
  

    
      
          
            
  
Inline assembler for Thumb2 architectures

This document assumes some familiarity with assembly language programming and should be read after studying
the tutorial. For a detailed description of the instruction set consult the
Architecture Reference Manual detailed below.
The inline assembler supports a subset of the ARM Thumb-2 instruction set described here. The syntax tries
to be as close as possible to that defined in the above ARM manual, converted to Python function calls.

Instructions operate on 32 bit signed integer data except where stated otherwise. Most supported instructions
operate on registers R0-R7 only: where R8-R15 are supported this is stated. Registers R8-R12 must be
restored to their initial value before return from a function. Registers R13-R15 constitute the Link Register,
Stack Pointer and Program Counter respectively.


Document conventions

Where possible the behaviour of each instruction is described in Python, for example


	add(Rd, Rn, Rm) Rd = Rn + Rm




This enables the effect of instructions to be demonstrated in Python. In certain case this is impossible
because Python doesn’t support concepts such as indirection. The pseudocode employed in such cases is
described on the relevant page.



Instruction categories

The following sections details the subset of the ARM Thumb-2 instruction set supported by MicroPython.



	1. Register move instructions

	2. Load register from memory

	3. Store register to memory

	4. Logical & bitwise instructions

	5. Arithmetic instructions

	6. Comparison instructions

	7. Branch instructions

	8. Stack push and pop

	9. Miscellaneous instructions

	10. Floating point instructions

	11. Assembler directives







Usage examples

These sections provide further code examples and hints on the use of the assembler.



	1. Hints and tips
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1. Register move instructions


1.1. Document conventions

Notation: Rd, Rn denote ARM registers R0-R15. immN denotes an immediate
value having a width of N bits. These instructions affect the condition flags.



1.2. Register moves

Where immediate values are used, these are zero-extended to 32 bits. Thus
mov(R0, 0xff) will set R0 to 255.


	mov(Rd, imm8) Rd = imm8


	mov(Rd, Rn) Rd = Rn


	movw(Rd, imm16) Rd = imm16


	movt(Rd, imm16) Rd = (Rd & 0xffff) | (imm16 << 16)




movt writes an immediate value to the top halfword of the destination register.
It does not affect the contents of the bottom halfword.


	movwt(Rd, imm32) Rd = imm32




movwt is a pseudo-instruction: the MicroPython assembler emits a movw followed
by a movt to move a 32-bit value into Rd.
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2. Load register from memory


2.1. Document conventions

Notation: Rt, Rn denote ARM registers R0-R7 except where stated. immN represents an immediate
value having a width of N bits hence imm5 is constrained to the range 0-31. [Rn + immN] is the contents
of the memory address obtained by adding Rn and the offset immN. Offsets are measured in
bytes. These instructions affect the condition flags.



2.2. Register Load


	ldr(Rt, [Rn, imm7]) Rt = [Rn + imm7] Load a 32 bit word


	ldrb(Rt, [Rn, imm5]) Rt = [Rn + imm5] Load a byte


	ldrh(Rt, [Rn, imm6]) Rt = [Rn + imm6] Load a 16 bit half word




Where a byte or half word is loaded, it is zero-extended to 32 bits.

The specified immediate offsets are measured in bytes. Hence in the case of ldr the 7 bit value
enables 32 bit word aligned values to be accessed with a maximum offset of 31 words. In the case of ldrh the
6 bit value enables 16 bit half-word aligned values to be accessed with a maximum offset of 31 half-words.
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3. Store register to memory


3.1. Document conventions

Notation: Rt, Rn denote ARM registers R0-R7 except where stated. immN represents an immediate
value having a width of N bits hence imm5 is constrained to the range 0-31. [Rn + imm5] is the
contents of the memory address obtained by adding Rn and the offset imm5. Offsets are measured in
bytes. These instructions do not affect the condition flags.



3.2. Register Store


	str(Rt, [Rn, imm7]) [Rn + imm7] = Rt Store a 32 bit word


	strb(Rt, [Rn, imm5]) [Rn + imm5] = Rt Store a byte (b0-b7)


	strh(Rt, [Rn, imm6]) [Rn + imm6] = Rt Store a 16 bit half word (b0-b15)




The specified immediate offsets are measured in bytes. Hence in the case of str the 7 bit value
enables 32 bit word aligned values to be accessed with a maximum offset of 31 words. In the case of strh the
6 bit value enables 16 bit half-word aligned values to be accessed with a maximum offset of 31 half-words.
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4. Logical & bitwise instructions


4.1. Document conventions

Notation: Rd, Rn denote ARM registers R0-R7 except in the case of the
special instructions where R0-R15 may be used. Rn<a-b> denotes an ARM register
whose contents must lie in range a <= contents <= b. In the case of instructions
with two register arguments, it is permissible for them to be identical. For example
the following will zero R0 (Python R0 ^= R0) regardless of its initial contents.


	eor(r0, r0)




These instructions affect the condition flags except where stated.



4.2. Logical instructions


	and_(Rd, Rn) Rd &= Rn


	orr(Rd, Rn) Rd |= Rn


	eor(Rd, Rn) Rd ^= Rn


	mvn(Rd, Rn) Rd = Rn ^ 0xffffffff i.e. Rd = 1’s complement of Rn


	bic(Rd, Rn) Rd &= ~Rn bit clear Rd using mask in Rn




Note the use of “and_” instead of “and”, because “and” is a reserved keyword in Python.



4.3. Shift and rotation instructions


	lsl(Rd, Rn<0-31>) Rd <<= Rn


	lsr(Rd, Rn<1-32>) Rd = (Rd & 0xffffffff) >> Rn Logical shift right


	asr(Rd, Rn<1-32>) Rd >>= Rn arithmetic shift right


	ror(Rd, Rn<1-31>) Rd = rotate_right(Rd, Rn) Rd is rotated right Rn bits.




A rotation by (for example) three bits works as follows. If Rd initially
contains bits b31 b30..b0 after rotation it will contain b2 b1 b0 b31 b30..b3



4.4. Special instructions

Condition codes are unaffected by these instructions.


	clz(Rd, Rn) Rd = count_leading_zeros(Rn)




count_leading_zeros(Rn) returns the number of binary zero bits before the first binary one bit in Rn.


	rbit(Rd, Rn) Rd = bit_reverse(Rn)




bit_reverse(Rn) returns the bit-reversed contents of Rn. If Rn contains bits b31 b30..b0 Rd will be set
to b0 b1 b2..b31

Trailing zeros may be counted by performing a bit reverse prior to executing clz.
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5. Arithmetic instructions


5.1. Document conventions

Notation: Rd, Rm, Rn denote ARM registers R0-R7. immN denotes an immediate
value having a width of N bits e.g. imm8, imm3. carry denotes
the carry condition flag, not(carry) denotes its complement. In the case of instructions
with more than one register argument, it is permissible for some to be identical. For example
the following will add the contents of R0 to itself, placing the result in R0:


	add(r0, r0, r0)




Arithmetic instructions affect the condition flags except where stated.



5.2. Addition


	add(Rdn, imm8) Rdn = Rdn + imm8


	add(Rd, Rn, imm3) Rd = Rn + imm3


	add(Rd, Rn, Rm) Rd = Rn +Rm


	adc(Rd, Rn) Rd = Rd + Rn + carry






5.3. Subtraction


	sub(Rdn, imm8) Rdn = Rdn - imm8


	sub(Rd, Rn, imm3) Rd = Rn - imm3


	sub(Rd, Rn, Rm) Rd = Rn - Rm


	sbc(Rd, Rn) Rd = Rd - Rn - not(carry)






5.4. Negation


	neg(Rd, Rn) Rd = -Rn






5.5. Multiplication and division


	mul(Rd, Rn) Rd = Rd * Rn




This produces a 32 bit result with overflow lost. The result may be treated as
signed or unsigned according to the definition of the operands.


	sdiv(Rd, Rn, Rm) Rd = Rn / Rm


	udiv(Rd, Rn, Rm) Rd = Rn / Rm




These functions perform signed and unsigned division respectively. Condition flags
are not affected.
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6. Comparison instructions

These perform an arithmetic or logical instruction on two arguments, discarding the result
but setting the condition flags. Typically these are used to test data values without changing
them prior to executing a conditional branch.


6.1. Document conventions

Notation: Rd, Rm, Rn denote ARM registers R0-R7. imm8 denotes an immediate
value having a width of 8 bits.



6.2. The Application Program Status Register (APSR)

This contains four bits which are tested by the conditional branch instructions. Typically a
conditional branch will test multiple bits, for example bge(LABEL). The meaning of
condition codes can depend on whether the operands of an arithmetic instruction are viewed as
signed or unsigned integers. Thus bhi(LABEL) assumes unsigned numbers were processed while
bgt(LABEL) assumes signed operands.



6.3. APSR Bits


	Z (zero)




This is set if the result of an operation is zero or the operands of a comparison are equal.


	N (negative)




Set if the result is negative.


	C (carry)




An addition sets the carry flag when the result overflows out of the MSB, for example adding
0x80000000 and 0x80000000. By the nature of two’s complement arithmetic this behaviour is reversed
on subtraction, with a borrow indicated by the carry bit being clear. Thus 0x10 - 0x01 is executed
as 0x10 + 0xffffffff which will set the carry bit.


	V (overflow)




The overflow flag is set if the result, viewed as a two’s compliment number, has the “wrong” sign
in relation to the operands. For example adding 1 to 0x7fffffff will set the overflow bit because
the result (0x8000000), viewed as a two’s complement integer, is negative. Note that in this instance
the carry bit is not set.



6.4. Comparison instructions

These set the APSR (Application Program Status Register) N (negative), Z (zero), C (carry) and V
(overflow) flags.


	cmp(Rn, imm8) Rn - imm8


	cmp(Rn, Rm) Rn - Rm


	cmn(Rn, Rm) Rn + Rm


	tst(Rn, Rm) Rn & Rm






6.5. Conditional execution

The it and ite instructions provide a means of conditionally executing from one to four subsequent
instructions without the need for a label.


	it(<condition>) If then




Execute the next instruction if <condition> is true:

cmp(r0, r1)
it(eq)
mov(r0, 100) # runs if r0 == r1
# execution continues here






	ite(<condition>) If then else




If <condtion> is true, execute the next instruction, otherwise execute the
subsequent one. Thus:

cmp(r0, r1)
ite(eq)
mov(r0, 100) # runs if r0 == r1
mov(r0, 200) # runs if r0 != r1
# execution continues here





This may be extended to control the execution of upto four subsequent instructions: it[x[y[z]]]
where x,y,z=t/e; e.g. itt, itee, itete, ittte, itttt, iteee, etc.
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7. Branch instructions

These cause execution to jump to a target location usually specified by a label (see the label
assembler directive). Conditional branches and the it and ite instructions test
the Application Program Status Register (APSR) N (negative), Z (zero), C (carry) and V
(overflow) flags to determine whether the branch should be executed.

Most of the exposed assembler instructions (including move operations) set the flags but
there are explicit comparison instructions to enable values to be tested.

Further detail on the meaning of the condition flags is provided in the section
describing comparison functions.


7.1. Document conventions

Notation: Rm denotes ARM registers R0-R15. LABEL denotes a label defined with the
label() assembler directive. <condition> indicates one of the following condition
specifiers:


	eq Equal to (result was zero)


	ne Not equal


	cs Carry set


	cc Carry clear


	mi Minus (negative)


	pl Plus (positive)


	vs Overflow set


	vc Overflow clear


	hi > (unsigned comparison)


	ls <= (unsigned comparison)


	ge >= (signed comparison)


	lt < (signed comparison)


	gt > (signed comparison)


	le <= (signed comparison)






7.2. Branch to label


	b(LABEL) Unconditional branch


	beq(LABEL) branch if equal


	bne(LABEL) branch if not equal


	bge(LABEL) branch if greater than or equal


	bgt(LABEL) branch if greater than


	blt(LABEL) branch if less than (<) (signed)


	ble(LABEL) branch if less than or equal to (<=) (signed)


	bcs(LABEL) branch if carry flag is set


	bcc(LABEL) branch if carry flag is clear


	bmi(LABEL) branch if negative


	bpl(LABEL) branch if positive


	bvs(LABEL) branch if overflow flag set


	bvc(LABEL) branch if overflow flag is clear


	bhi(LABEL) branch if higher (unsigned)


	bls(LABEL) branch if lower or equal (unsigned)






7.3. Long branches

The code produced by the branch instructions listed above uses a fixed bit width to specify the
branch destination, which is PC relative. Consequently in long programs where the
branch instruction is remote from its destination the assembler will produce a “branch not in
range” error. This can be overcome with the “wide” variants such as


	beq_w(LABEL) long branch if equal




Wide branches use 4 bytes to encode the instruction (compared with 2 bytes for standard branch instructions).



7.4. Subroutines (functions)

When entering a subroutine the processor stores the return address in register r14, also
known as the link register (lr). Return to the instruction after the subroutine call is
performed by updating the program counter (r15 or pc) from the link register, This
process is handled by the following instructions.


	bl(LABEL)




Transfer execution to the instruction after LABEL storing the return address in
the link register (r14).


	bx(Rm) Branch to address specified by Rm.




Typically bx(lr) is issued to return from a subroutine. For nested subroutines the
link register of outer scopes must be saved (usually on the stack) before performing
inner subroutine calls.
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8. Stack push and pop


8.1. Document conventions

The push() and pop() instructions accept as their argument a register set containing
a subset, or possibly all, of the general-purpose registers R0-R12 and the link register (lr or R14).
As with any Python set the order in which the registers are specified is immaterial. Thus the
in the following example the pop() instruction would restore R1, R7 and R8 to their contents prior
to the push():


	push({r1, r8, r7}) Save three registers on the stack.


	pop({r7, r1, r8}) Restore them






8.2. Stack operations


	push({regset}) Push a set of registers onto the stack


	pop({regset}) Restore a set of registers from the stack
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9. Miscellaneous instructions


	nop() pass no operation.


	wfi() Suspend execution in a low power state until an interrupt occurs.


	cpsid(flags) set the Priority Mask Register - disable interrupts.


	cpsie(flags) clear the Priority Mask Register - enable interrupts.


	mrs(Rd, special_reg) Rd = special_reg copy a special register to a general register. The special register
may be IPSR (Interrupt Status Register) or BASEPRI (Base Priority Register). The IPSR provides a means of determining
the exception number of an interrupt being processed. It contains zero if no interrupt is being processed.




Currently the cpsie() and cpsid() functions are partially implemented.
They require but ignore the flags argument and serve as a means of enabling and disabling interrupts.
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10. Floating point instructions

These instructions support the use of the ARM floating point coprocessor
(on platforms such as the Pyboard which are equipped with one). The FPU
has 32 registers known as s0-s31 each of which can hold a single
precision float. Data can be passed between the FPU registers and the
ARM core registers with the vmov instruction.

Note that MicroPython doesn’t support passing floats to
assembler functions, nor can you put a float into r0 and expect a
reasonable result. There are two ways to overcome this. The first is to
use arrays, and the second is to pass and/or return integers and convert
to and from floats in code.


10.1. Document conventions

Notation: Sd, Sm, Sn denote FPU registers, Rd, Rm, Rn denote ARM core
registers. The latter can be any ARM core register although registers
R13-R15 are unlikely to be appropriate in this context.



10.2. Arithmetic


	vadd(Sd, Sn, Sm) Sd = Sn + Sm


	vsub(Sd, Sn, Sm) Sd = Sn - Sm


	vneg(Sd, Sm) Sd = -Sm


	vmul(Sd, Sn, Sm) Sd = Sn * Sm


	vdiv(Sd, Sn, Sm) Sd = Sn / Sm


	vsqrt(Sd, Sm) Sd = sqrt(Sm)




Registers may be identical: vmul(S0, S0, S0) will execute S0 = S0*S0



10.3. Move between ARM core and FPU registers


	vmov(Sd, Rm) Sd = Rm


	vmov(Rd, Sm) Rd = Sm




The FPU has a register known as FPSCR, similar to the ARM core’s APSR, which stores condition
codes plus other data. The following instructions provide access to this.


	vmrs(APSR_nzcv, FPSCR)




Move the floating-point N, Z, C, and V flags to the APSR N, Z, C, and V flags.

This is done after an instruction such as an FPU
comparison to enable the condition codes to be tested by the assembler
code. The following is a more general form of the instruction.


	vmrs(Rd, FPSCR) Rd = FPSCR






10.4. Move between FPU register and memory


	vldr(Sd, [Rn, offset]) Sd = [Rn + offset]


	vstr(Sd, [Rn, offset]) [Rn + offset] = Sd




Where [Rn + offset] denotes the memory address obtained by adding Rn to the offset. This
is specified in bytes. Since each float value occupies a 32 bit word, when accessing arrays of
floats the offset must always be a multiple of four bytes.



10.5. Data comparison


	vcmp(Sd, Sm)




Compare the values in Sd and Sm and set the FPU N, Z,
C, and V flags. This would normally be followed by vmrs(APSR_nzcv, FPSCR)
to enable the results to be tested.



10.6. Convert between integer and float


	vcvt_f32_s32(Sd, Sm) Sd = float(Sm)


	vcvt_s32_f32(Sd, Sm) Sd = int(Sm)
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11. Assembler directives


11.1. Labels


	label(INNER1)




This defines a label for use in a branch instruction. Thus elsewhere in the code a b(INNER1)
will cause execution to continue with the instruction after the label directive.



11.2. Defining inline data

The following assembler directives facilitate embedding data in an assembler code block.


	data(size, d0, d1 .. dn)




The data directive creates n array of data values in memory. The first argument specifies the
size in bytes of the subsequent arguments. Hence the first statement below will cause the
assembler to put three bytes (with values 2, 3 and 4) into consecutive memory locations
while the second will cause it to emit two four byte words.

data(1, 2, 3, 4)
data(4, 2, 100000)





Data values longer than a single byte are stored in memory in little-endian format.


	align(nBytes)




Align the following instruction to an nBytes value. ARM Thumb-2 instructions must be two
byte aligned, hence it’s advisable to issue align(2) after data directives and
prior to any subsequent code. This ensures that the code will run irrespective of the
size of the data array.
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1. Hints and tips

The following are some examples of the use of the inline assembler and some
information on how to work around its limitations. In this document the term
“assembler function” refers to a function declared in Python with the
@micropython.asm_thumb decorator, whereas “subroutine” refers to assembler
code called from within an assembler function.


1.1. Code branches and subroutines

It is important to appreciate that labels are local to an assembler function.
There is currently no way for a subroutine defined in one function to be called
from another.

To call a subroutine the instruction bl(LABEL) is issued. This transfers
control to the instruction following the label(LABEL) directive and stores
the return address in the link register (lr or r14). To return the
instruction bx(lr) is issued which causes execution to continue with
the instruction following the subroutine call. This mechanism implies that, if
a subroutine is to call another, it must save the link register prior to
the call and restore it before terminating.

The following rather contrived example illustrates a function call. Note that
it’s necessary at the start to branch around all subroutine calls: subroutines
end execution with bx(lr) while the outer function simply “drops off the end”
in the style of Python functions.

@micropython.asm_thumb
def quad(r0):
    b(START)
    label(DOUBLE)
    add(r0, r0, r0)
    bx(lr)
    label(START)
    bl(DOUBLE)
    bl(DOUBLE)

print(quad(10))





The following code example demonstrates a nested (recursive) call: the classic
Fibonacci sequence. Here, prior to a recursive call, the link register is saved
along with other registers which the program logic requires to be preserved.

@micropython.asm_thumb
def fib(r0):
    b(START)
    label(DOFIB)
    push({r1, r2, lr})
    cmp(r0, 1)
    ble(FIBDONE)
    sub(r0, 1)
    mov(r2, r0) # r2 = n -1
    bl(DOFIB)
    mov(r1, r0) # r1 = fib(n -1)
    sub(r0, r2, 1)
    bl(DOFIB)   # r0 = fib(n -2)
    add(r0, r0, r1)
    label(FIBDONE)
    pop({r1, r2, lr})
    bx(lr)
    label(START)
    bl(DOFIB)

for n in range(10):
    print(fib(n))







1.2. Argument passing and return

The tutorial details the fact that assembler functions can support from zero to
three arguments, which must (if used) be named r0, r1 and r2. When
the code executes the registers will be initialised to those values.

The data types which can be passed in this way are integers and memory
addresses. With current firmware all possible 32 bit values may be passed and
returned. If the return value may have the most significant bit set a Python
type hint should be employed to enable MicroPython to determine whether the
value should be interpreted as a signed or unsigned integer: types are
int or uint.

@micropython.asm_thumb
def uadd(r0, r1) -> uint:
    add(r0, r0, r1)





hex(uadd(0x40000000,0x40000000)) will return 0x80000000, demonstrating the
passing and return of integers where bits 30 and 31 differ.

The limitations on the number of arguments and return values can be overcome by means
of the array module which enables any number of values of any type to be accessed.


1.2.1. Multiple arguments

If a Python array of integers is passed as an argument to an assembler
function, the function will receive the address of a contiguous set of integers.
Thus multiple arguments can be passed as elements of a single array. Similarly a
function can return multiple values by assigning them to array elements.
Assembler functions have no means of determining the length of an array:
this will need to be passed to the function.

This use of arrays can be extended to enable more than three arrays to be used.
This is done using indirection: the uctypes module supports addressof()
which will return the address of an array passed as its argument. Thus you can
populate an integer array with the addresses of other arrays:

from uctypes import addressof
@micropython.asm_thumb
def getindirect(r0):
    ldr(r0, [r0, 0]) # Address of array loaded from passed array
    ldr(r0, [r0, 4]) # Return element 1 of indirect array (24)

def testindirect():
    a = array.array('i',[23, 24])
    b = array.array('i',[0,0])
    b[0] = addressof(a)
    print(getindirect(b))







1.2.2. Non-integer data types

These may be handled by means of arrays of the appropriate data type. For
example, single precision floating point data may be processed as follows.
This code example takes an array of floats and replaces its contents with
their squares.

from array import array

@micropython.asm_thumb
def square(r0, r1):
    label(LOOP)
    vldr(s0, [r0, 0])
    vmul(s0, s0, s0)
    vstr(s0, [r0, 0])
    add(r0, 4)
    sub(r1, 1)
    bgt(LOOP)

a = array('f', (x for x in range(10)))
square(a, len(a))
print(a)





The uctypes module supports the use of data structures beyond simple
arrays. It enables a Python data structure to be mapped onto a bytearray
instance which may then be passed to the assembler function.




1.3. Named constants

Assembler code may be made more readable and maintainable by using named
constants rather than littering code with numbers. This may be achieved
thus:

MYDATA = const(33)

@micropython.asm_thumb
def foo():
    mov(r0, MYDATA)





The const() construct causes MicroPython to replace the variable name
with its value at compile time. If constants are declared in an outer
Python scope they can be shared between multiple assembler functions and
with Python code.



1.4. Assembler code as class methods

MicroPython passes the address of the object instance as the first argument
to class methods. This is normally of little use to an assembler function.
It can be avoided by declaring the function as a static method thus:

class foo:
  @staticmethod
  @micropython.asm_thumb
  def bar(r0):
    add(r0, r0, r0)







1.5. Use of unsupported instructions

These can be coded using the data statement as shown below. While
push() and pop() are supported the example below illustrates the
principle. The necessary machine code may be found in the ARM v7-M
Architecture Reference Manual. Note that the first argument of data
calls such as

data(2, 0xe92d, 0x0f00) # push r8,r9,r10,r11





indicates that each subsequent argument is a two byte quantity.



1.6. Overcoming MicroPython’s integer restriction

The Pyboard chip includes a CRC generator. Its use presents a problem in
MicroPython because the returned values cover the full gamut of 32 bit
quantities whereas small integers in MicroPython cannot have differing values
in bits 30 and 31. This limitation is overcome with the following code, which
uses assembler to put the result into an array and Python code to
coerce the result into an arbitrary precision unsigned integer.

from array import array
import stm

def enable_crc():
    stm.mem32[stm.RCC + stm.RCC_AHB1ENR] |= 0x1000

def reset_crc():
    stm.mem32[stm.CRC+stm.CRC_CR] = 1

@micropython.asm_thumb
def getval(r0, r1):
    movwt(r3, stm.CRC + stm.CRC_DR)
    str(r1, [r3, 0])
    ldr(r2, [r3, 0])
    str(r2, [r0, 0])

def getcrc(value):
    a = array('i', [0])
    getval(a, value)
    return a[0] & 0xffffffff # coerce to arbitrary precision

enable_crc()
reset_crc()
for x in range(20):
    print(hex(getcrc(0)))
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Working with filesystems
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This tutorial describes how MicroPython provides an on-device filesystem,
allowing standard Python file I/O methods to be used with persistent storage.

MicroPython automatically creates a default configuration and auto-detects the
primary filesystem, so this tutorial will be mostly useful if you want to modify
the partitioning, filesystem type, or use custom block devices.

The filesystem is typically backed by internal flash memory on the device, but
can also use external flash, RAM, or a custom block device.

On some ports (e.g. STM32), the filesystem may also be available over USB MSC to
a host PC. The pyboard.py tool also provides a way for the host PC to access to
the filesystem on all ports.

Note: This is mainly for use on bare-metal ports like STM32 and ESP32. On ports
with an operating system (e.g. the Unix port) the filesystem is provided by the
host OS.


VFS

MicroPython implements a Unix-like Virtual File System (VFS) layer. All mounted
filesystems are combined into a single virtual filesystem, starting at the root
/. Filesystems are mounted into directories in this structure, and at
startup the working directory is changed to where the primary filesystem is
mounted.

On STM32 / Pyboard, the internal flash is mounted at /flash, and optionally
the SDCard at /sd. On ESP8266/ESP32, the primary filesystem is mounted at
/.



Block devices

A block device is an instance of a class that implements the
uos.AbstractBlockDev protocol.


Built-in block devices

Ports provide built-in block devices to access their primary flash.

On power-on, MicroPython will attempt to detect the filesystem on the default
flash and configure and mount it automatically. If no filesystem is found,
MicroPython will attempt to create a FAT filesystem spanning the entire flash.
Ports can also provide a mechanism to “factory reset” the primary flash, usually
by some combination of button presses at power on.


STM32 / Pyboard

The pyb.Flash class provides access to the internal flash. On some
boards which have larger external flash (e.g. Pyboard D), it will use that
instead. The start kwarg should always be specified, i.e.
pyb.Flash(start=0).

Note: For backwards compatibility, when constructed with no arguments (i.e.
pyb.Flash()), it only implements the simple block interface and reflects the
virtual device presented to USB MSC (i.e. it includes a virtual partition table
at the start).



ESP8266

The internal flash is exposed as a block device object which is created in the
flashbdev module on start up. This object is by default added as a global
variable so it can usually be accessed simply as bdev. This implements the
extended interface.



ESP32

The esp32.Partition class implements a block device for partitions
defined for the board. Like ESP8266, there is a global variable bdev which
points to the default partition. This implements the extended interface.




Custom block devices

The following class implements a simple block device that stores its data in
RAM using a bytearray:

class RAMBlockDev:
    def __init__(self, block_size, num_blocks):
        self.block_size = block_size
        self.data = bytearray(block_size * num_blocks)

    def readblocks(self, block_num, buf):
        for i in range(len(buf)):
            buf[i] = self.data[block_num * self.block_size + i]

    def writeblocks(self, block_num, buf):
        for i in range(len(buf)):
            self.data[block_num * self.block_size + i] = buf[i]

    def ioctl(self, op, arg):
        if op == 4: # get number of blocks
            return len(self.data) // self.block_size
        if op == 5: # get block size
            return self.block_size





It can be used as follows:

import os

bdev = RAMBlockDev(512, 50)
os.VfsFat.mkfs(bdev)
os.mount(bdev, '/ramdisk')





An example of a block device that supports both the simple and extended
interface (i.e. both signatures and behaviours of the
uos.AbstractBlockDev.readblocks() and
uos.AbstractBlockDev.writeblocks() methods) is:

class RAMBlockDev:
    def __init__(self, block_size, num_blocks):
        self.block_size = block_size
        self.data = bytearray(block_size * num_blocks)

    def readblocks(self, block_num, buf, offset=0):
        addr = block_num * self.block_size + offset
        for i in range(len(buf)):
            buf[i] = self.data[addr + i]

    def writeblocks(self, block_num, buf, offset=None):
        if offset is None:
            # do erase, then write
            for i in range(len(buf) // self.block_size):
                self.ioctl(6, block_num + i)
            offset = 0
        addr = block_num * self.block_size + offset
        for i in range(len(buf)):
            self.data[addr + i] = buf[i]

    def ioctl(self, op, arg):
        if op == 4: # block count
            return len(self.data) // self.block_size
        if op == 5: # block size
            return self.block_size
        if op == 6: # block erase
            return 0





As it supports the extended interface, it can be used with littlefs:

import os

bdev = RAMBlockDev(512, 50)
os.VfsLfs2.mkfs(bdev)
os.mount(bdev, '/ramdisk')





Once mounted, the filesystem (regardless of its type) can be used as it
normally would be used from Python code, for example:

with open('/ramdisk/hello.txt', 'w') as f:
    f.write('Hello world')
print(open('/ramdisk/hello.txt').read())








Filesystems

MicroPython ports can provide implementations of FAT,
littlefs v1 and littlefs v2.

The following table shows which filesystems are included in the firmware by
default for given port/board combinations, however they can be optionally
enabled in a custom firmware build.



	Board

	FAT

	littlefs v1

	littlefs v2





	pyboard 1.0, 1.1, D

	Yes

	No

	Yes



	Other STM32

	Yes

	No

	No



	ESP8266 (1M)

	No

	No

	Yes



	ESP8266 (2M+)

	Yes

	No

	Yes



	ESP32

	Yes

	No

	Yes







FAT

The main advantage of the FAT filesystem is that it can be accessed over USB MSC
on supported boards (e.g. STM32) without any additional drivers required on the
host PC.

However, FAT is not tolerant to power failure during writes and this can lead to
filesystem corruption. For applications that do not require USB MSC, it is
recommended to use littlefs instead.

To format the entire flash using FAT:

# ESP8266 and ESP32
import os
os.umount('/')
os.VfsFat.mkfs(bdev)
os.mount(bdev, '/')

# STM32
import os, pyb
os.umount('/flash')
os.VfsFat.mkfs(pyb.Flash(start=0))
os.mount(pyb.Flash(start=0), '/flash')
os.chdir('/flash')







Littlefs

Littlefs [https://github.com/ARMmbed/littlefs] is a filesystem designed for flash-based devices, and is much more
resistant to filesystem corruption.


Note

There are reports of littlefs v1 and v2 failing in certain
situations, for details see littlefs issue 347 [https://github.com/ARMmbed/littlefs/issues/347]  and
littlefs issue 295 [https://github.com/ARMmbed/littlefs/issues/295].
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The pyboard.py tool

This is a standalone Python tool that runs on your PC that provides a way to:


	Quickly run a Python script or command on a MicroPython device. This is useful
while developing MicroPython programs to quickly test code without needing to
copy files to/from the device.


	Access the filesystem on a device. This allows you to deploy your code to the
device (even if the board doesn’t support USB MSC).




Despite the name, pyboard.py works on all MicroPython ports that support the
raw REPL (including STM32, ESP32, ESP8266, NRF).

You can download the latest version from GitHub [https://github.com/micropython/micropython/blob/master/tools/pyboard.py]. The
only dependency is the pyserial library which can be installed from PiPy or
your system package manager.

Running pyboard.py --help gives the following output:

usage: pyboard [-h] [-d DEVICE] [-b BAUDRATE] [-u USER] [-p PASSWORD]
               [-c COMMAND] [-w WAIT] [--follow | --no-follow] [-f]
               [files [files ...]]

Run scripts on the pyboard.

positional arguments:
  files                 input files

optional arguments:
  -h, --help            show this help message and exit
  -d DEVICE, --device DEVICE
                        the serial device or the IP address of the pyboard
  -b BAUDRATE, --baudrate BAUDRATE
                        the baud rate of the serial device
  -u USER, --user USER  the telnet login username
  -p PASSWORD, --password PASSWORD
                        the telnet login password
  -c COMMAND, --command COMMAND
                        program passed in as string
  -w WAIT, --wait WAIT  seconds to wait for USB connected board to become
                        available
  --follow              follow the output after running the scripts
                        [default if no scripts given]
  -f, --filesystem      perform a filesystem action: cp local :device | cp
                        :device local | cat path | ls [path] | rm path | mkdir
                        path | rmdir path






Running a command on the device

This is useful for testing short snippets of code, or to script an interaction
with the device.:

$ pyboard.py --device /dev/ttyACM0 -c 'print(1+1)'
2





If you are often interacting with the same device, you can set the environment
variable PYBOARD_DEVICE as an alternative to using the --device
command line option.  For example, the following is equivalent to the previous
example:

$ export PYBOARD_DEVICE=/dev/ttyACM0
$ pyboard.py -c 'print(1+1)'





Similarly, the PYBOARD_BAUDRATE environment variable can be used
to set the default for the --baudrate option.



Running a script on the device

If you have a script, app.py that you want to run on a device, then use:

$ pyboard.py --device /dev/ttyACM0 app.py





Note that this doesn’t actually copy app.py to the device’s filesystem, it just
loads the code into RAM and executes it. Any output generated by the program
will be displayed.

If the program app.py does not finish then you’ll need to stop pyboard.py,
eg with Ctrl-C. The program app.py will still continue to run on the
MicroPython device.



Filesystem access

Using the -f flag, the following filesystem operations are supported:


	cp src [src...] dest Copy files to/from the device.


	cat path Print the contents of a file on the device.


	ls [path] List contents of a directory (defaults to current working directory).


	rm path Remove a file.


	mkdir path Create a directory.


	rmdir path Remove a directory.




The cp command uses a ssh-like convention for referring to local and
remote files. Any path starting with a : will be interpreted as on the
device, otherwise it will be local. So:

$ pyboard.py --device /dev/ttyACM0 -f cp main.py :main.py





will copy main.py from the current directory on the PC to a file named main.py
on the device. The filename can be omitted, e.g.:

$ pyboard.py --device /dev/ttyACM0 -f cp main.py :





is equivalent to the above.

Some more examples:

# Copy main.py from the device to the local PC.
$ pyboard.py --device /dev/ttyACM0 -f cp :main.py main.py
# Same, but using . instead.
$ pyboard.py --device /dev/ttyACM0 -f cp :main.py .

# Copy three files to the device, keeping their names
# and paths (note: `lib` must exist on the device)
$ pyboard.py --device /dev/ttyACM0 -f cp main.py app.py lib/foo.py :

# Remove a file from the device.
$ pyboard.py --device /dev/ttyACM0 -f rm util.py

# Print the contents of a file on the device.
$ pyboard.py --device /dev/ttyACM0 -f cat boot.py
...contents of boot.py...







Using the pyboard library

You can also use pyboard.py as a library for scripting interactions with a
MicroPython board.

import pyboard
pyb = pyboard.Pyboard('/dev/ttyACM0', 115200)
pyb.enter_raw_repl()
ret = pyb.exec('print(1+1)')
print(ret)
pyb.exit_raw_repl()
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Pycopy libraries


Warning

Important summary of this section:


	Pycopy implements a subset of Python functionality for each module.


	To ease extensibility, Pycopy versions of standard Python modules
usually have u (“micro”) prefix, e.g. utime instead of time.


	Any particular Pycopy port or variant may miss any feature/function
described in the general documentation (due to resource constraints or
other limitations).


	More complete and compatible with CPython modules are available via
the pycopy-lib project.
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Builtin types, functions and exceptions (builtins [https://docs.python.org/3.5/library/builtins.html#module-builtins])

All builtin functions and exceptions are described here. They are also
available via builtins module.


Functions and types


	
abs()

	




	
all()

	




	
any()

	




	
bin()

	




	
class bool

	




	
class bytearray

	




	
class bytes

	See CPython documentation: bytes [https://docs.python.org/3.5/library/functions.html#bytes].






	
callable()

	




	
chr()

	




	
classmethod()

	




	
compile()

	




	
class complex

	




	
delattr(obj, name)

	The argument name should be a string, and this function deletes the named
attribute from the object given by obj.






	
class dict

	




	
dir()

	




	
divmod()

	




	
enumerate()

	




	
eval()

	




	
exec()

	




	
filter()

	




	
class float

	




	
class frozenset

	




	
getattr()

	




	
globals()

	




	
hasattr()

	




	
hash()

	




	
hex()

	




	
id()

	




	
input()

	




	
class int

	
	
classmethod from_bytes(bytes, byteorder)

	In Pycopy, byteorder parameter must be positional (this is
compatible with CPython).






	
to_bytes(size, byteorder)

	In Pycopy, byteorder parameter must be positional (this is
compatible with CPython).










	
isinstance()

	




	
issubclass()

	




	
iter()

	




	
len()

	




	
class list

	




	
locals()

	




	
map()

	




	
max()

	




	
class memoryview(buffer)

	
class memoryview(buffer, offset, size)

	See CPython documentation: memoryview [https://docs.python.org/3.5/library/stdtypes.html#memoryview].


Pycopy extension

A str object can be passed to memoryview() constructor, in which
case underlying UTF-8 encoded data can be accessed by memoryview.
memoryview("abc") is equivalent to memoryview("abc".encode()),
but is more memory-efficient.
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cmath – mathematical functions for complex numbers

This module implements a subset of the corresponding CPython module,
as described below. For more information, refer to the original
CPython documentation: cmath [https://docs.python.org/3.5/library/cmath.html#module-cmath].

The cmath module provides some basic mathematical functions for
working with complex numbers.

Availability: not available on WiPy and ESP8266. Floating point support
required for this module.


Functions


	
cmath.cos(z)

	Return the cosine of z.






	
cmath.exp(z)

	Return the exponential of z.






	
cmath.log(z)

	Return the natural logarithm of z.  The branch cut is along the negative real axis.






	
cmath.log10(z)

	Return the base-10 logarithm of z.  The branch cut is along the negative real axis.






	
cmath.phase(z)

	Returns the phase of the number z, in the range (-pi, +pi].






	
cmath.polar(z)

	Returns, as a tuple, the polar form of z.






	
cmath.rect(r, phi)

	Returns the complex number with modulus r and phase phi.






	
cmath.sin(z)

	Return the sine of z.






	
cmath.sqrt(z)

	Return the square-root of z.







Constants


	
cmath.e

	base of the natural logarithm






	
cmath.pi

	the ratio of a circle’s circumference to its diameter
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gc – control the garbage collector

This module implements a subset of the corresponding CPython module,
as described below. For more information, refer to the original
CPython documentation: gc [https://docs.python.org/3.5/library/gc.html#module-gc].


Functions


	
gc.enable()

	Enable automatic garbage collection.






	
gc.disable()

	Disable automatic garbage collection.  Heap memory can still be allocated,
and garbage collection can still be initiated manually using gc.collect().






	
gc.collect()

	Run a garbage collection.






	
gc.mem_alloc()

	Return the number of bytes of heap RAM that are allocated.


Difference to CPython

This function is MicroPython extension.
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math – mathematical functions

This module implements a subset of the corresponding CPython module,
as described below. For more information, refer to the original
CPython documentation: math [https://docs.python.org/3.5/library/math.html#module-math].

The math module provides some basic mathematical functions for
working with floating-point numbers.

Note: On the pyboard, floating-point numbers have 32-bit precision.

Availability: not available on WiPy. Floating point support required
for this module.


Functions


	
math.acos(x)

	Return the inverse cosine of x.






	
math.acosh(x)

	Return the inverse hyperbolic cosine of x.






	
math.asin(x)

	Return the inverse sine of x.






	
math.asinh(x)

	Return the inverse hyperbolic sine of x.






	
math.atan(x)

	Return the inverse tangent of x.






	
math.atan2(y, x)

	Return the principal value of the inverse tangent of y/x.






	
math.atanh(x)

	Return the inverse hyperbolic tangent of x.






	
math.ceil(x)

	Return an integer, being x rounded towards positive infinity.






	
math.copysign(x, y)

	Return x with the sign of y.






	
math.cos(x)

	Return the cosine of x.






	
math.cosh(x)

	Return the hyperbolic cosine of x.






	
math.degrees(x)

	Return radians x converted to degrees.






	
math.erf(x)

	Return the error function of x.






	
math.erfc(x)

	Return the complementary error function of x.






	
math.exp(x)

	Return the exponential of x.






	
math.expm1(x)

	Return exp(x) - 1.






	
math.fabs(x)

	Return the absolute value of x.






	
math.floor(x)

	Return an integer, being x rounded towards negative infinity.






	
math.fmod(x, y)

	Return the remainder of x/y.






	
math.frexp(x)

	Decomposes a floating-point number into its mantissa and exponent.
The returned value is the tuple (m, e) such that x == m * 2**e
exactly.  If x == 0 then the function returns (0.0, 0), otherwise
the relation 0.5 <= abs(m) < 1 holds.






	
math.gamma(x)

	Return the gamma function of x.






	
math.isfinite(x)

	Return True if x is finite.






	
math.isinf(x)

	Return True if x is infinite.






	
math.isnan(x)

	Return True if x is not-a-number






	
math.ldexp(x, exp)

	Return x * (2**exp).






	
math.lgamma(x)

	Return the natural logarithm of the gamma function of x.






	
math.log(x)

	Return the natural logarithm of x.






	
math.log10(x)

	Return the base-10 logarithm of x.






	
math.log2(x)

	Return the base-2 logarithm of x.






	
math.modf(x)

	Return a tuple of two floats, being the fractional and integral parts of
x.  Both return values have the same sign as x.






	
math.pow(x, y)

	Returns x to the power of y.






	
math.radians(x)

	Return degrees x converted to radians.






	
math.sin(x)

	Return the sine of x.






	
math.sinh(x)

	Return the hyperbolic sine of x.






	
math.sqrt(x)

	Return the square root of x.






	
math.tan(x)

	Return the tangent of x.






	
math.tanh(x)

	Return the hyperbolic tangent of x.






	
math.trunc(x)

	Return an integer, being x rounded towards 0.







Constants


	
math.e

	base of the natural logarithm






	
math.pi

	the ratio of a circle’s circumference to its diameter
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sys – system specific functions

This module implements a subset of the corresponding CPython module,
as described below. For more information, refer to the original
CPython documentation: sys [https://docs.python.org/3.5/library/sys.html#module-sys].


Functions


	
sys.exit(retval=0, /)

	Terminate current program with a given exit code. Underlyingly, this
function raise as SystemExit exception. If an argument is given, its
value given as an argument to SystemExit.






	
sys.print_exception(exc, file=sys.stdout, /)

	Print exception with a traceback to a file-like object file (or
sys.stdout by default).


Difference to CPython

This is simplified version of a function which appears in the
traceback module in CPython. Unlike traceback.print_exception(),
this function takes just exception value instead of exception type,
exception value, and traceback object; file argument should be
positional; further arguments are not supported. CPython-compatible
traceback module can be found in micropython-lib.
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uarray – arrays of numeric data

This module implements a subset of the corresponding CPython module,
as described below. For more information, refer to the original
CPython documentation: array [https://docs.python.org/3.5/library/array.html#module-array].

Supported format codes: b, B, h, H, i, I, l,
L, q, Q, f, d (the latter 2 depending on the
floating-point support).


Classes


	
class uarray.array(typecode[, iterable])

	Create array with elements of given type. Initial contents of the
array are given by iterable. If it is not provided, an empty
array is created.


	
append(val)

	Append new element val to the end of array, growing it.






	
extend(iterable)

	Append new elements as contained in iterable to the end of
array, growing it.
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ubinascii – binary/ASCII conversions

This module implements a subset of the corresponding CPython module,
as described below. For more information, refer to the original
CPython documentation: binascii [https://docs.python.org/3.5/library/binascii.html#module-binascii].

This module implements conversions between binary data and various
encodings of it in ASCII form (in both directions).


Functions


	
ubinascii.hexlify(data[, sep])

	Convert the bytes in the data object to a hexadecimal representation.
Returns a bytes object.

If the additional argument sep is supplied it is used as a separator
between hexadecimal values.






	
ubinascii.unhexlify(data)

	Convert hexadecimal data to binary representation. Returns bytes string.
(i.e. inverse of hexlify)






	
ubinascii.a2b_base64(data)

	Decode base64-encoded data, ignoring invalid characters in the input.
Conforms to RFC 2045 s.6.8 [https://tools.ietf.org/html/rfc2045#section-6.8].
Returns a bytes object.






	
ubinascii.b2a_base64(data)

	Encode binary data in base64 format, as in RFC 3548 [https://tools.ietf.org/html/rfc3548.html]. Returns the encoded data
followed by a newline character, as a bytes object.
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ucollections – collection and container types

This module implements a subset of the corresponding CPython module,
as described below. For more information, refer to the original
CPython documentation: collections [https://docs.python.org/3.5/library/collections.html#module-collections].

This module implements advanced collection and container types to
hold/accumulate various objects.


Classes


	
ucollections.deque(iterable, maxlen[, flags])

	Deques (double-ended queues) are a list-like container that support O(1)
appends and pops from either side of the deque.  New deques are created
using the following arguments:



	iterable must be the empty tuple, and the new deque is created empty.


	maxlen must be specified and the deque will be bounded to this
maximum length.  Once the deque is full, any new items added will
discard items from the opposite end.


	The optional flags can be 1 to check for overflow when adding items.







As well as supporting bool and len, deque objects have the following
methods:


	
deque.append(x)

	Add x to the right side of the deque.
Raises IndexError if overflow checking is enabled and there is no more room left.






	
deque.popleft()

	Remove and return an item from the left side of the deque.
Raises IndexError if no items are present.










	
ucollections.namedtuple(name, fields)

	This is factory function to create a new namedtuple type with a specific
name and set of fields. A namedtuple is a subclass of tuple which allows
to access its fields not just by numeric index, but also with an attribute
access syntax using symbolic field names. Fields is a sequence of strings
specifying field names. For compatibility with CPython it can also be a
a string with space-separated field named (but this is less efficient).
Example of use:

from ucollections import namedtuple

MyTuple = namedtuple("MyTuple", ("id", "name"))
t1 = MyTuple(1, "foo")
t2 = MyTuple(2, "bar")
print(t1.name)
assert t2.name == t2[1]










	
ucollections.OrderedDict(...)

	dict type subclass which remembers and preserves the order of keys
added. When ordered dict is iterated over, keys/items are returned in
the order they were added:

from ucollections import OrderedDict

# To make benefit of ordered keys, OrderedDict should be initialized
# from sequence of (key, value) pairs.
d = OrderedDict([("z", 1), ("a", 2)])
# More items can be added as usual
d["w"] = 5
d["b"] = 3
for k, v in d.items():
    print(k, v)





Output:

z 1
a 2
w 5
b 3
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uerrno – system error codes

This module implements a subset of the corresponding CPython module,
as described below. For more information, refer to the original
CPython documentation: errno [https://docs.python.org/3.5/library/errno.html#module-errno].

This module provides access to symbolic error codes for OSError exception.
A particular inventory of codes depends on MicroPython port.


Constants


	
EEXIST, EAGAIN, etc.

	Error codes, based on ANSI C/POSIX standard. All error codes start with
“E”. As mentioned above, inventory of the codes depends on
MicroPython port. Errors are usually accessible as exc.args[0]
where exc is an instance of OSError. Usage example:

try:
    uos.mkdir("my_dir")
except OSError as exc:
    if exc.args[0] == uerrno.EEXIST:
        print("Directory already exists")










	
uerrno.errorcode

	Dictionary mapping numeric error codes to strings with symbolic error
code (see above):

>>> print(uerrno.errorcode[uerrno.EEXIST])
EEXIST
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uhashlib – hashing algorithms

This module implements a subset of the corresponding CPython module,
as described below. For more information, refer to the original
CPython documentation: hashlib [https://docs.python.org/3.5/library/hashlib.html#module-hashlib].

This module implements binary data hashing algorithms. The exact inventory
of available algorithms depends on a board. Among the algorithms which may
be implemented:


	SHA256 - The current generation, modern hashing algorithm (of SHA2 series).
It is suitable for cryptographically-secure purposes. Included in the
MicroPython core and any board is recommended to provide this, unless
it has particular code size constraints.


	SHA1 - A previous generation algorithm. Not recommended for new usages,
but SHA1 is a part of number of Internet standards and existing
applications, so boards targeting network connectivity and
interoperability will try to provide this.


	MD5 - A legacy algorithm, not considered cryptographically secure. Only
selected boards, targeting interoperability with legacy applications,
will offer this.





Constructors


	
class uhashlib.sha256([data])

	Create an SHA256 hasher object and optionally feed data into it.






	
class uhashlib.sha1([data])

	Create an SHA1 hasher object and optionally feed data into it.






	
class uhashlib.md5([data])

	Create an MD5 hasher object and optionally feed data into it.







Methods


	
hash.update(data)

	Feed more binary data into hash.






	
hash.digest()

	Return hash for all data passed through hash, as a bytes object. After this
method is called, more data cannot be fed into the hash any longer.






	
hash.hexdigest()

	This method is NOT implemented. Use ubinascii.hexlify(hash.digest())
to achieve a similar effect.
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uheapq – heap queue algorithm

This module implements a subset of the corresponding CPython module,
as described below. For more information, refer to the original
CPython documentation: heapq [https://docs.python.org/3.5/library/heapq.html#module-heapq].

This module implements the
min heap queue algorithm [https://en.wikipedia.org/wiki/Heap_%28data_structure%29].

A heap queue is essentially a list that has its elements stored in such a way
that the first item of the list is always the smallest.


Functions


	
uheapq.heappush(heap, item)

	Push the item onto the heap.






	
uheapq.heappop(heap)

	Pop the first item from the heap, and return it.  Raise IndexError if
heap is empty.

The returned item will be the smallest item in the heap.






	
uheapq.heapify(x)

	Convert the list x into a heap.  This is an in-place operation.
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uio – input/output streams

This module implements a subset of the corresponding CPython module,
as described below. For more information, refer to the original
CPython documentation: io [https://docs.python.org/3.5/library/io.html#module-io].

This module contains additional types of stream (file-like) objects
and helper functions.


Conceptual hierarchy


Difference to CPython

Conceptual hierarchy of stream base classes is simplified in Pycopy,
as described in this section.
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ujson – JSON encoding and decoding

This module implements a subset of the corresponding CPython module,
as described below. For more information, refer to the original
CPython documentation: json [https://docs.python.org/3.5/library/json.html#module-json].

This modules allows to convert between Python objects and the JSON
data format.


Functions


	
ujson.dump(obj, stream)

	Serialise obj to a JSON string, writing it to the given stream.






	
ujson.dumps(obj)

	Return obj represented as a JSON string.






	
ujson.load(stream)

	Parse the given stream, interpreting it as a JSON string and
deserialising the data to a Python object.  The resulting object is
returned.

Parsing continues until end-of-file is encountered.
A ValueError is raised if the data in stream is not correctly formed.






	
ujson.loads(str)

	Parse the JSON str and return an object.  Raises ValueError if the
string is not correctly formed.
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uos – basic “operating system” services

This module implements a subset of the corresponding CPython module,
as described below. For more information, refer to the original
CPython documentation: os [https://docs.python.org/3.5/library/os.html#module-os].

The uos module contains functions for filesystem access and mounting,
terminal redirection and duplication, and the uname and urandom
functions.


General functions


	
uos.uname()

	Return a tuple (possibly a named tuple) containing information about the
underlying machine and/or its operating system.  The tuple has five fields
in the following order, each of them being a string:



	sysname – the name of the underlying system


	nodename – the network name (can be the same as sysname)


	release – the version of the underlying system


	version – the MicroPython version and build date


	machine – an identifier for the underlying hardware (eg board, CPU)












	
uos.urandom(n)

	Return a bytes object with n random bytes. Whenever possible, it is
generated by the hardware random number generator.







Filesystem access


	
uos.chdir(path)

	Change current directory.






	
uos.getcwd()

	Get the current directory.






	
uos.ilistdir([dir])

	This function returns an iterator which then yields tuples corresponding to
the entries in the directory that it is listing.  With no argument it lists the
current directory, otherwise it lists the directory given by dir.

The tuples have the form (name, type, inode[, size]):



	name is a string (or bytes if dir is a bytes object) and is the name of
the entry;


	type is an integer that specifies the type of the entry, with 0x4000 for
directories and 0x8000 for regular files;


	inode is an integer corresponding to the inode of the file, and may be 0
for filesystems that don’t have such a notion.


	Some platforms may return a 4-tuple that includes the entry’s size.  For
file entries, size is an integer representing the size of the file
or -1 if unknown.  Its meaning is currently undefined for directory
entries.












	
uos.listdir([dir])

	This function is not part of the uos API. You can use os.listdir()
from pycopy-lib, or use following snippet instead:

def listdir(dir):
    return [x[0] for x in uos.ilistdir(dir)]










	
uos.mkdir(path)

	Create a new directory.






	
uos.remove(path)

	Remove a file.






	
uos.rmdir(path)

	Remove a directory.






	
uos.rename(old_path, new_path)

	Rename a file.






	
uos.stat(path, follow_symlinks=True)

	Get the status of a file or directory.

Second argument can be False to stat a symlink instead of a path it
points too, which is otherwise the defauly behavior. Not all ports support
2-argument form.






	
uos.statvfs(path)

	Get the status of a fileystem.

Returns a tuple with the filesystem information in the following order:



	f_bsize – file system block size


	f_frsize – fragment size


	f_blocks – size of fs in f_frsize units


	f_bfree – number of free blocks


	f_bavail – number of free blocks for unprivileged users


	f_files – number of inodes


	f_ffree – number of free inodes


	f_favail – number of free inodes for unprivileged users


	f_flag – mount flags


	f_namemax – maximum filename length







Parameters related to inodes: f_files, f_ffree, f_avail
and the f_flags parameter may return 0 as they can be unavailable
in a port-specific implementation.






	
uos.sync()

	Sync all filesystems.







Terminal redirection and duplication


	
uos.dupterm(stream_object, index=0, /)

	Duplicate or switch the MicroPython terminal (the REPL) on the given stream-like
object. The stream_object argument must be a native stream object, or derive
from uio.IOBase and implement the readinto() and
write() methods.  The stream should be in non-blocking mode and
readinto() should return None if there is no data available for reading.

After calling this function all terminal output is repeated on this stream,
and any input that is available on the stream is passed on to the terminal input.

The index parameter should be a non-negative integer and specifies which
duplication slot is set.  A given port may implement more than one slot (slot 0
will always be available) and in that case terminal input and output is
duplicated on all the slots that are set.

If None is passed as the stream_object then duplication is cancelled on
the slot given by index.

The function returns the previous stream-like object in the given slot.







Filesystem mounting

Some ports provide a Virtual Filesystem (VFS) and the ability to mount multiple
“real” filesystems within this VFS.  Filesystem objects can be mounted at either
the root of the VFS, or at a subdirectory that lives in the root.  This allows
dynamic and flexible configuration of the filesystem that is seen by Python
programs.  Ports that have this functionality provide the mount() and
umount() functions, and possibly various filesystem implementations
represented by VFS classes.


	
uos.mount(fsobj, mount_point, *, readonly)

	Mount the filesystem object fsobj at the location in the VFS given by the
mount_point string.  fsobj can be a a VFS object that has a mount()
method, or a block device.  If it’s a block device then the filesystem type
is automatically detected (an exception is raised if no filesystem was
recognised).  mount_point may be '/' to mount fsobj at the root,
or '/<name>' to mount it at a subdirectory under the root.

If readonly is True then the filesystem is mounted read-only.

During the mount process the method mount() is called on the filesystem
object.

Will raise OSError(EPERM) if mount_point is already mounted.






	
uos.umount(mount_point)

	Unmount a filesystem. mount_point can be a string naming the mount location,
or a previously-mounted filesystem object.  During the unmount process the
method umount() is called on the filesystem object.

Will raise OSError(EINVAL) if mount_point is not found.






	
class uos.VfsFat(block_dev)

	Create a filesystem object that uses the FAT filesystem format.  Storage of
the FAT filesystem is provided by block_dev.
Objects created by this constructor can be mounted using mount().


	
static mkfs(block_dev)

	Build a FAT filesystem on block_dev.










	
class uos.VfsLfs1(block_dev, readsize=32, progsize=32, lookahead=32)

	Create a filesystem object that uses the littlefs v1 filesystem format [https://github.com/ARMmbed/littlefs/tree/v1].
Storage of the littlefs filesystem is provided by block_dev, which must
support the extended interface.
Objects created by this constructor can be mounted using mount().

See Working with filesystems for more information.


	
static mkfs(block_dev, readsize=32, progsize=32, lookahead=32)

	Build a Lfs1 filesystem on block_dev.






Note

There are reports of littlefs v1 failing in certain situations,
for details see littlefs issue 347 [https://github.com/ARMmbed/littlefs/issues/347].
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urandom – pseudo-random number generation

This module implements a subset of the corresponding CPython module,
as described below. For more information, refer to the original
CPython documentation: random [https://docs.python.org/3.5/library/random.html#module-random].

This module is used to generate pseudo-random numbers. On all Pycopy
platforms, this module is not seeded on startup, which means that if
you do not explicitly call seed() function with a suitable varying value,
the numbers returned by the getrandbits() function will be the same for
each fresh interpreter session. This is a deliberate design decision, to
emphasize the fact that this module does not provide true randomness.

Seeding the pseudo-random generator lies on a user application,
by whatever means suitable for a particular application. For example,
having a pseudo-random, but stable predictable sequence (as provided by
this module by default) is useful for reproducible testing. For some
applications, seeding with the current time (perhaps, lower milliseconds
or microseconds of it, as provided by utime.ticks_ms() or
utime.ticks_us()) would be enough. Yet for other, a true random
generator may be required. (Note that this module does not guarantee
that it is a cryptographically secure random number generator). For
systems which support it, a high-quality random number generator should
be provided by uos.urandom() function (values from which can be used
to seed this module).


Functions


	
urandom.seed(value)

	Seed pseudo-random generator with an integer value, which should
be sufficiently random itself. As explained above, if this function
is not called, the numbers returned from getrandbits() will be
the same for each session.






	
urandom.getrandbits(num_bits)

	Return an unsigned (non-negative) pseudo-random number of num_bits
bit size, i.e. in the range of [0, 2**num_bits - 1] (inclusive).
Miximum supported value of num_bits is 32, though some implementations
may apply even lower limit (so use the value not higher than actually
needed for a particular use).
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ure – simple regular expressions

This module implements a subset of the corresponding CPython module,
as described below. For more information, refer to the original
CPython documentation: re [https://docs.python.org/3.5/library/re.html#module-re].

This module implements regular expression operations. Regular expression
syntax supported is a subset of CPython re module (and actually is
a subset of POSIX extended regular expressions).

Supported operators and special sequences are:


	.

	Match any character.



	[...]

	Match set of characters. Individual characters and ranges are supported,
including negated sets (e.g. [^a-c]). To include ] in the set,
it should be escaped, e.g.: r"[\]]" or "[\\]]". No other escapes
are supported (will lead to error). To include - in the set, it should
be listed as the first item, e.g. [^-0-9].



	^

	Match the start of the string.



	$

	Match the end of the string.



	?

	Match zero or one of the previous sub-pattern.



	*

	Match zero or more of the previous sub-pattern.



	+

	Match one or more of the previous sub-pattern.



	??

	Non-greedy version of ?, match zero or one, with the preference
for zero.



	*?

	Non-greedy version of *, match zero or more, with the preference
for the shortest match.



	+?

	Non-greedy version of +, match one or more, with the preference
for the shortest match.



	|

	Match either the left-hand side or the right-hand side sub-patterns of
this operator.



	(...)

	Capturing group. A substring captured by a group can be accessed with
match.group() method.



	(?:...)

	Non-capturing group.



	\d

	Matches digit. Equivalent to [0-9].



	\D

	Matches non-digit. Equivalent to [^0-9].



	\s

	Matches whitespace. Equivalent to [ \t-\r].



	\S

	Matches non-whitespace. Equivalent to [^ \t-\r].



	\w

	Matches “word characters” (ASCII only). Equivalent to [A-Za-z0-9_].



	\W

	Matches non “word characters” (ASCII only). Equivalent to [^A-Za-z0-9_].



	\

	Escape character. Allows to quote characters which have special meaning
in regex syntax: .*+?[](){}|^$. For example, \* is
equivalent to a literal * (not treated as the * repetition operator).
It is an error to escape any other character besides these operators and
special sequences described above (\d, etc.). In particular, sequences
like \r, \n, etc. should not appear as regular expression syntax.
Instead, they can (and should) be handled as normal escapes in Python strings.
Due to this, it’s not recommended to use raw Python strings (r"") for
ure regular expressions. For example, r"\r\n" when used as
a regular expression will lead to error (unsupported escape sequence in
regex). To match CR character followed by LF, use "\r\n".





NOT SUPPORTED:


	counted repetitions ({m,n})


	named groups ((?P<name>...))


	more advanced assertions (\A, \Z, \b, \B)


	special character escapes like \r, \n - use Python’s own escaping
instead


	etc.




Example:

import ure

# As ure doesn't support escapes itself, use of r"" strings is not
# recommended.
regex = ure.compile("[\r\n]")

regex.split("line1\rline2\nline3\r\n")

# Result:
# ['line1', 'line2', 'line3', '', '']






Functions


	
ure.compile(regex_str[, flags])

	Compile regular expression, return regex object.






	
ure.match(regex_str, string)

	Compile regex_str and match against string. Match always happens
from starting position in a string.






	
ure.search(regex_str, string)

	Compile regex_str and search it in a string. Unlike match, this will search
string for first position which matches regex (which still may be
0 if regex is anchored).






	
ure.sub(regex_str, replace, string, count=0, /)

	Compile regex_str and search for it in string, replacing all matches
with replace, and returning the new string.

replace can be a string or a function.  If it is a string then escape
sequences of the form \<number> and \g<number> can be used to
expand to the corresponding group (or an empty string for unmatched groups).
If replace is a function then it must take a single argument (the match
object) and should return a replacement string.

If count is specified and non-zero then substitution will stop after
this many substitutions are made.

Note: availability of this function depends on Pycopy port.






	
ure.DEBUG

	Flag value, display debug information about compiled expression.
(Availability depends on Pycopy port.)







Regex objects

Compiled regular expression. Instances of this class are created using
ure.compile().


	
regex.match(string)

	
regex.search(string)

	
regex.sub(replace, string, count=0, /)

	Similar to the module-level functions match(), search()
and sub().
Using methods is (much) more efficient if the same regex is applied to
multiple strings.






	
regex.split(string, max_split=-1, /)

	Split a string using regex. If max_split is given, it specifies
maximum number of splits to perform. Returns list of strings (there
may be up to max_split+1 elements if it’s specified).







Match objects

Match objects as returned by match() and search() methods, and passed
to the replacement function in sub().


	
match.group(index)

	Return matching (sub)string. index is 0 for entire match,
1 and above for each capturing group. Only numeric groups are supported.






	
match.start([index])

	
match.end([index])

	Return the index in the original string of the start or end of the
substring group that was matched.  index defaults to the entire
group, otherwise it will select a group.

Note: availability of these methods depends on Pycopy port.
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uselect – wait for events on a set of streams

This module implements a subset of the corresponding CPython module,
as described below. For more information, refer to the original
CPython documentation: select [https://docs.python.org/3.5/library/select.html#module-select].

This module provides functions to efficiently wait for events on multiple
streams (select streams which are ready for operations).


Functions


	
uselect.poll()

	Create an instance of the Poll class.






	
uselect.select(rlist, wlist, xlist[, timeout])

	This function is inefficient and not supported by Pycopy. Use poll()
instead. Full select module with this function is available in
pycopy-lib.







class Poll


Methods


	
poll.register(obj[, eventmask[, userdata]])

	Register stream obj for polling. eventmask is logical OR of:


	uselect.POLLIN  - data available for reading


	uselect.POLLOUT - more data can be written




Note that flags like uselect.POLLHUP and uselect.POLLERR are
not valid as input eventmask (these are unsolicited events which
will be returned from poll() regardless of whether they are asked
for). This semantics is per POSIX.

eventmask defaults to uselect.POLLIN | uselect.POLLOUT.

As a Pycopy extension, an arbitrary userdata can be passed,
which will be associated with the added stream and which will be
returned from ipoll() method (but NOT from poll() method).

It is OK to call this function multiple times for the same obj.
Successive calls will update obj’s eventmask to the value of
eventmask (i.e. will behave as modify()), and, if userdata
is specified, it will be updated too.






	
poll.unregister(obj, throw=True)

	Unregister obj from polling. If obj was not previously registered,
KeyError exception will be raised.

As a Pycopy extension, if second parameter is False, exception
will not be raised.






	
poll.modify(obj, eventmask)

	Modify the eventmask for obj. If obj is not registered, OSError
is raised with error of ENOENT.






	
poll.poll(timeout=-1, /)

	Wait for at least one of the registered objects to become ready or have an
exceptional condition, with optional timeout in milliseconds (if timeout
arg is not specified or -1, there is no timeout).

Returns list of (obj, event, …) tuples. There may be other elements in
tuple, depending on a platform and version, so don’t assume that its size is 2.
The event element specifies which events happened with a stream and
is a combination of uselect.POLL* constants described above. Note that
flags uselect.POLLHUP and uselect.POLLERR can be returned at any time
(even if were not asked for), and must be acted on accordingly (the
corresponding stream unregistered from poll and likely closed), because
otherwise all further invocations of poll() may return immediately with
these flags set for this stream again.

In case of timeout, an empty list is returned.


Difference to CPython

Tuples returned may contain more than 2 elements as described above.
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usocket – socket module

This module implements a subset of the corresponding CPython module,
as described below. For more information, refer to the original
CPython docum